Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Schwinger and Thirring models at finite chemical potential and temperature

dc.contributor.authorÁlvarez Estrada, Ramón F.
dc.contributor.authorGómez Nicola, Ángel
dc.date.accessioned2023-06-20T20:06:51Z
dc.date.available2023-06-20T20:06:51Z
dc.date.issued1998-03-15
dc.description© 1998 The American Physical Society. This work was supported in part by the European Commission under the Human Capital and Mobility program contract number ERB-CHRX-CT94-0423. The financial support of CICYT, projects AEN96-1634 and AEN97-1693, is also acknowledged. One of us (A.G.N.) has received financial support from Spanish Ministry of Education and Culture, 57 SCHWINGER AND THIRRING MODELS AT FINITE... 3631 through the ‘‘Perfeccionamiento de Doctores y Tecnólogos en el Extranjero’’ program and he is very grateful to Professor T. W. B. Kibble, Professor R. Rivers, and Professor T. Evans of the Theory Group at Imperial College, for their kind hospitality and for useful discussions and suggestions. We are also grateful to Professor F. Ruiz Ruiz for providing some useful information.
dc.description.abstractThe imaginary time generating functional Z for the assless Schwinger model at nonzero chemical potential mu and temperature T is studied in a torus with spatial length L. The lack of Hermiticity of the Dirac operator gives rise to a nontrivial μ- and T-dependent phase J in the effective action. When the Dirac operator has no zero modes (trivial sector), we evaluate J, which is a topological contribution, and we find exactly Z, the thermodynamical partition function, the boson propagator and the thermally averaged Polyakov loop. The μ-dependent contribution of the free partition function cancels exactly the nonperturbative one from J, for L→∞, yielding a zero charge density for the system, which bosonizes at nonzero μ. The boson mass is e/√π, independent of T and μ, which is also the inverse correlation length between two opposite charges. Both the boson propagator and the Polyakov loop acquire a new T- and μ -dependent term at L→∞,. The imaginary time generating functional for the massless Thirring model at nonzero T and μ is obtained exactly in terms of the above solution of the Schwinger model in the trivial sector. For this model, the μ dependences of the thermodynamical partition function, the total fermion number density and the fermion two- point correlation function are obtained. The phase J displayed here leads to our new results and allows us to complement nontrivially previous studies on those models.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission under the Human Capital and Mobility
dc.description.sponsorshipCICYT
dc.description.sponsorshipSpanish Ministry of Education and Culture
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30676
dc.identifier.doi10.1103/PhysRevD.57.3618
dc.identifier.issn0556-2821
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.57.3618
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59586
dc.issue.number6
dc.journal.titlePhysical review D
dc.language.isoeng
dc.page.final3633
dc.page.initial3618
dc.publisherAmer Physical Soc
dc.relation.projectIDERB-CHRX-CT94-0423
dc.relation.projectIDAEN96-1634
dc.relation.projectIDAEN97-1693
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordGauge-theories
dc.subject.keyword2 Dimensions
dc.subject.keywordDensity
dc.subject.keywordFamily
dc.subject.keywordMatter
dc.subject.keywordZero
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleSchwinger and Thirring models at finite chemical potential and temperature
dc.typejournal article
dc.volume.number57
dcterms.references[1] J. Schwinger, Phys. Rev. 128, 2425 (1962). [2] J. Lowenstein and A. Swieca, Ann. Phys. (N.Y.) 68, 172 (1971). [3] K. Johnson, Phys. Lett. 5, 253 (1963). [4] S. Coleman, Commun. Math. Phys. 31, 259 (1973). [5] S. Coleman, R. Jackiw, and L. Susskind, Ann. Phys. (N.Y.) 93, 267 (1975). [6] F. Ruiz Ruiz and R. F. Alvarez-Estrada, Phys. Lett. B 180, 153 (1986); 182, 354 (1986); Phys. Rev. D 35, 3161 (1987). [7] I. Sachs and A. Wipf, Helv. Phys. Acta 65, 652 (1992). [8] A. Fayyazuddin et al., Nucl. Phys. B425, 553 (1994); J. V. Steele, A. Subramanian, and I. Zahed, ibid. B452, 545 (1995); J. V. Steele, J. J. M. Verbaarschot, and I. Zahed, Phys. Rev. D 51, 5915 (1995). [9] H. R. Christiansen and F. A. Schaposnik, Phys. Rev. D 53, 3260 (1996). [10] G. Grignani et al., Int. J. Mod. Phys. A 11, 4103 (1996). [11] W. Thirring, Ann. Phys. (N.Y.) 3, 91 (1958). [12] H. M. Fried, Functional Methods and Models in Quantum Field Theory (MIT Press, Cambridge, MA, 1972). [13] H. Yokota, Prog. Theor. Phys. 77, 1450 (1987). [14] I. Sachs and A. Wipf, Phys. Lett. B 317, 545 (1993); Ann. Phys. (N.Y.) 249, 380 (1996). [15] C. Bernard, Phys. Rev. D 9, 3312 (1974). [16] J. Kapusta, Finite-Temperature Field Theory (Cambridge University Press, Cambridge, England, 1989). [17] K. Fujikawa, Phys. Rev. D 21, 2848 (1980); 22, 1499(E) (19809. [18] H. Itoyama and A. H. Mueller, Nucl. Phys. B218, 349 (1983); A. Das and A. Karev, Phys. Rev. D 36, 623 (1987); C. Contreras and M. Loewe, Z. Phys. C 40, 253 (1988); Y. L. Niu and G. J. Ni, Phys. Rev. D 38, 3840 (1988); R. Baier and E. Pilon, Z. Phys. C 52, 339 (1991); A. V. Smilga, Phys. Rev. D 45, 1378 (1992); A. Gómez Nicola and R. F. Alvarez- Estrada, Int. J. Mod. Phys. A 9, 1423 (1994). [19] K. Fujikawa, Phys. Rev. D 29, 285 (1984). [20] R. Jackiw, Rev. Mod. Phys. 52, 661 (1980). [21] P. D. Morley, Phys. Rev. D 17, 598 (1978). [22] J. Bijnens, Nucl. Phys. B367, 709 (1991). [23] A. N. Redlich and L. C. R. Wijewardhana, Phys. Rev. Lett. 54, 970 (1985). [24] V. A. Rubakov and A. N. Tavkhelidze, Phys. Lett. 165B, 109 (1985); E. Alvarez, J. L. F. Barbon, and A. Nieto, Phys. Rev. D 42, 1215 (1990); R. F. Alvarez-Estrada and A. Gómez Nicola, Phys. Lett. B 355, 288 (1995); 380, 491(E) (1996). [25] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 19809. [26] J. E. Hetrick and Y. Hosotani, Phys. Rev. D 38, 2621 (1988). [27] R. D. Ball, Phys. Rep. 182, 1 (1989). [28] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
dspace.entity.typePublication
relation.isAuthorOfPublication574aa06c-6665-4e9a-b925-fa7675e8c592
relation.isAuthorOfPublication.latestForDiscovery574aa06c-6665-4e9a-b925-fa7675e8c592

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gnicola43libre.pdf
Size:
319.29 KB
Format:
Adobe Portable Document Format

Collections