Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena

dc.contributor.authorArrieta Algarra, José María
dc.contributor.authorRodríguez Bernal, Aníbal
dc.contributor.authorSouplet, Philippe
dc.date.accessioned2023-06-20T09:46:26Z
dc.date.available2023-06-20T09:46:26Z
dc.date.issued2004
dc.description.abstractWe consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions u: either the space derivative u., blows up in finite time (with u itself remaining bounded), or u is global and converges in C-1 norm to the unique steady state. The main difficulty is to prove C-1 boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of Zelenyak. After deriving precise estimates on the solutions and on the Lyapunov functional, we proceed by contradiction by showing that any C-1 unbounded global solution should converge to a singular stationary solution, which does not exist. As a consequence of our results, we exhibit the following interesting situation: the trajectories starting from some bounded set of initial data in C-1 describe an unbounded set, although each of them is individually bounded and converges to the tame limit; the existence time T* is not a continuous function of the initial data.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/18083
dc.identifier.doi10.2422/2036-2145.2004.1.01
dc.identifier.issn0391-173X
dc.identifier.officialurlhttp://archive.numdam.org/ARCHIVE/ASNSP/ASNSP_2004_5_3_1/ASNSP_2004_5_3_1_1_0/ASNSP_2004_5_3_1_1_0.pdf
dc.identifier.relatedurlhttp://www.numdam.org/?lang=en
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50336
dc.issue.number1
dc.journal.titleAnnali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV
dc.language.isoeng
dc.page.final15
dc.page.initial1
dc.publisherScuola Normale Superiore
dc.relation.projectIDBFM2000-0798
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordHeat-equations
dc.subject.keywordSpaces
dc.subject.keywordBounds
dc.subject.keywordTime
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleBoundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena
dc.typejournal article
dc.volume.number3
dcterms.referencesN. ALAA, Solutions faibles d'équations paraboliques quasi-linéaires avec données initiales mesures, Ann. Math. Blaise-Pascal 3 (1996) 1–15. N. ALIKAKOS - P. BATES - C. GRANT, Blow up for a diffusion-advection equation, Proc. Roy. Soc. Edinburgh A 113 (1989), 181–190. S. ANGENENT - M. FILA, Interior gradient blow-up in a semilinear parabolic equation, Differential Integral Equations 9 (1996), 865–877. G. BARLES - F. DA LIO, On the generalized Dirichlet for viscous Hamilton-Jacobi equations, J. Math. Pures et Appl., to appear. M. BENACHOUR - S. DABULEANU, The mixed Cauchy-Dirichlet for a viscous Hamilton-Jacobi equation, Adv. Differential Equations, to appear. cf. M. BEN-ARTZI - PH. SCUPLET - F. B. WEISSLER, The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures et Appl. 81 (2002) 343–378. T. CAZENAVE - P.-L. LIONS, Solutions globales d'equations de la chaleur semilinéaires, Commun. Partial Differential Equations 9 (1984), 955–978. C.-N. CHEN, Infinite time blow-up of solutions to a nonlinear parabolic problem, J. Differential Equations 139 (1997), 409–427. G. CONNER - C. GRANT, Asymptotics of blowup for a convection-diffusion equation with conservation, Differential Integral Equations 9 (1996), 719–728. S. DABULEANU, "Problèmes aux limites pour les équations de Hamilton-Jacobi avec viscosité et données initiales peu regulières", PhD thesis, Université Nancy 1, 2003. K. DENG, Stabilization of solutions of a nonlinear parabolic equation with a gradient term, Math. Z., 216 (1994), 147–155. M. FILA - B. KAWOHL, Is quenching in infinite time possible?, Quart. Appl. Math. 8 (1990), 531–534. M. FILA - G. LIEBERMAN, Derivative blow-up and beyond for quasilinear parabolic equations, Differential Integral Equations 7 (1994), 811–821. M. FILA - P. SACKS, The transition from decay to blow-up in some reaction-diffusion-convection equations, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), 455–463, de Gruyter, Berlin, 1996. M. FILA - PH. SOUPLET - F. B. WEISSLER, Linear and nonlinear heat equations in L q δ spaces and universal bounds for global solutions, Math. Ann. 320 (2001), 87–113. V. GALAKTIONOV - J.-L. VÁZQUEZ, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997), 1–67. Y. GIGA, A bound for global solutions of semi-linear heat equations, Comm. Math. Phys. 103 (1986), 415–421. M. KARDAR - G. PARISI - Y. C. ZHANG, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889–892. O. LADYZENSKAYA - V. A. SOLONNIKOV - N. N. URALCEVA, "Linear and Quasilinear Equations of Parabolic Type", Amer. Math. Soc. Translations, Providence, RI, 1967. G. LIEBERMAN, The first initial-boundary value problem for quasilinear second order parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986), 347–387. P. L. LIONS, "Generalized solutions of Hamilton-Jacobi Equations", Pitman Research Notes in Math. 62, 1982. W.-M. NI - P. E. SACKS - J. TAVANTZIS, On the asymptotic behavior of solutions of certain quasi-linear equations of parabolic type, J. Differential Equations 54 (1984), 97–120. P. QUITTNER, A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenianae 68 (1999), 195–203. P. QUITTNER, Universal bound for global positive solutions of a superlinear parabolic problem, Math. Ann. 320 (2001), 299–305. P. QUITTNER, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math. 29 (2003), 757–799. P. QUITTNER - PH. SOUPLET - M. WINKLER, Initial blow-up rates and universal bounds for nonlinear heat equations, J. Differential Equations, to appear. PH. SOUPLET, Recent results and open problems on parabolic equations with gradient nonlinearities, Electronic J. Differential Equations 20 (2001), 1–19. PH. SOUPLET, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations 15 (2002), 237–256. PH. SOUPLET - F. B. WEISSLER, Poincaré's inequality and global solutions of a nonlinear parabolic equation, Ann. Inst. H. Poincaré, Anal. Non linéaire 16 (1999), 337–373. T. I. ZELENYAK, Stabilisation of solutions of boundary value problems for a second-order equation with one space variable, Differential Equations 4 (1968), 17–22.
dspace.entity.typePublication
relation.isAuthorOfPublication2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscovery2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal35.pdf
Size:
129.66 KB
Format:
Adobe Portable Document Format

Collections