Ultrametrics, Banach's fixed point theorem and the Riordan group
dc.contributor.author | Luzón, Ana | |
dc.contributor.author | Alonso Morón, Manuel | |
dc.date.accessioned | 2023-06-20T09:33:48Z | |
dc.date.available | 2023-06-20T09:33:48Z | |
dc.date.issued | 2008-07-28 | |
dc.description.abstract | We interpret the reciprocation process in K[[x]] as a fixed point problem related to contractive functions for certain adequate ultrametric spaces. This allows us to give a dynamical interpretation of certain arithmetical triangles introduced herein. Later we recognize, as it special case of our construction, the so-called Riordan group which is a device used in combinatorics. In this manner we give a new and alternative way to construct the proper Riordan arrays. Our point of view allows us to give a natural metric on the Riordan group turning this group into a topological group. This construction allows us to recognize a countable descending chain of normal subgroups. | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Directorate General for Higher Education (Portugal) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15172 | |
dc.identifier.citation | Luzón, A. y Alonso Morón, M. «Ultrametrics, Banach’s Fixed Point Theorem and the Riordan Group». Discrete Applied Mathematics, vol. 156, n.o 14, julio de 2008, pp. 2620-35. DOI.org (Crossref), https://doi.org/10.1016/j.dam.2007.10.026. | |
dc.identifier.doi | 10.1016/j.dam.2007.10.026 | |
dc.identifier.issn | 0166-218X | |
dc.identifier.officialurl | https//doi.org/10.1016/j.dam.2007.10.026 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/article/pii/S0166218X07004969 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49912 | |
dc.issue.number | 14 | |
dc.journal.title | Discrete applied mathematics | |
dc.language.iso | eng | |
dc.page.final | 2635 | |
dc.page.initial | 2620 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MAT 2005-05730-C02-02 | |
dc.relation.projectID | MTM-2006-0825 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.54 | |
dc.subject.cdu | 515.126.4 | |
dc.subject.cdu | 515.124 | |
dc.subject.keyword | Inverse relations | |
dc.subject.keyword | Arrays | |
dc.subject.keyword | Banach's fixed point theorem | |
dc.subject.keyword | Pascal triangles | |
dc.subject.keyword | Ultrametrics | |
dc.subject.keyword | Riordan arrays | |
dc.subject.keyword | Riordan group | |
dc.subject.keyword | Arithmetical triangles | |
dc.subject.ucm | Grupos (Matemáticas) | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Ultrametrics, Banach's fixed point theorem and the Riordan group | en |
dc.type | journal article | |
dc.volume.number | 156 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 95bd8189-3086-4e0f-94f6-06dee8c8f675 | |
relation.isAuthorOfPublication.latestForDiscovery | 95bd8189-3086-4e0f-94f6-06dee8c8f675 |
Download
Original bundle
1 - 1 of 1