Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An algorithm for finding the vertices of the k-additive monotone core

dc.contributor.authorMiranda Menéndez, Pedro
dc.contributor.authorGrabisch, Michel
dc.date.accessioned2023-06-20T00:18:05Z
dc.date.available2023-06-20T00:18:05Z
dc.date.issued2012
dc.description.abstractGiven a capacity, the set of dominating k-additive capacities is a convex polytope called the k-additive monotone core; thus, it is defined by its vertices. In this paper, we deal with the problem of deriving a procedure to obtain such vertices in the line of the results of Shapley and Ichiishi for the additive case. We propose an algorithm to determine the vertices of the n-additive monotone core and we explore the possible translations for the k-additive case.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16860
dc.identifier.doi10.1016/j.dam.2011.11.013
dc.identifier.issn0166-218X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0166218X1100463X
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42356
dc.issue.number4-5
dc.journal.titleDiscrete Applied Mathematics
dc.language.isoeng
dc.page.final639
dc.page.initial628
dc.publisherElsevier
dc.relation.projectIDMTM2007-61193
dc.relation.projectIDMTM2009-1072
dc.relation.projectIDBSCH-UCM910707
dc.rights.accessRightsrestricted access
dc.subject.cdu519.83
dc.subject.keywordPolyhedra
dc.subject.keywordCapacities
dc.subject.keywordk-additivity
dc.subject.keywordDominance
dc.subject.keywordCore
dc.subject.ucmTeoría de Juegos
dc.subject.unesco1207.06 Teoría de Juegos
dc.titleAn algorithm for finding the vertices of the k-additive monotone core
dc.typejournal article
dc.volume.number160
dcterms.referencesO. Bondareva, Some applications of linear programming to the theory of cooperative games, Problemy Kibernet 10 (1963) 119–139. A. Chateauneuf, J.-Y. Jaffray, Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion, Math. Social Sci. 17 (1989) 263–283. G. Choquet, Theory of capacities, Annales de l’Institut Fourier 5 (1953) 131–295. E.F. Combarro, P. Miranda, Adjacency on the order polytope with applications to the theory of fuzzy measures, Fuzzy Sets and Systems 180 (2010) 384–398. E.F. Combarro, P. Miranda, On the structure of the k-additive fuzzy measures, Fuzzy Sets and Systems 161 (2010) 2314–2327. A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping, The Annals of Mathematical Statististics 38 (1967) 325–339. D. Denneberg, Non-additive Measures and Integral, Kluwer Academic, Dordrecht, The Netherlands, 1994. T. Driessen, Cooperative Games, Kluwer Academic, 1988. D. Dubois, H. Prade, A class of fuzzy measures based on triangular norms, Internal Journal of General Systems 8 (1982) 43–61. M. Grabisch, Alternative representations of discrete fuzzy measures for decision making, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997) 587–607. M. Grabisch, k-order additive discrete fuzzy measures, in: Proceedings of 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU, Granada, Spain, 1996, pp. 1345–1350. M. Grabisch, k-order additive discrete fuzzy measures and their representation, Fuzzy Sets and Systems 92 (1997) 167–189. M. Grabisch, P. Miranda, On the vertices of the k-additive core, Discrete Math. 308 (2008) 5204–5217. J.C. Harsanyi, A simplified bargaining model for the n-person cooperative game, International Economic Review 4 (1963) 194–220. T. Ichiishi, Super-modularity: applications to convex games and to the Greedy algorithm for LP, Journal of Economic Theory 25 (1981) 283–286. J.-L. Marichal, Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral, European J. Oper. Res. 155 (3) (2004)771–791. P. Miranda, E.F. Combarro, On the structure of some families of fuzzy measures, IEEE Transactions on Fuzzy Systems 15 (6) (2007) 1068–1081. P. Miranda, E.F. Combarro, P. Gil, Extreme points of some families of non-additive measures, European J. Oper. Res. 33 (10) (2006) 3046–3066. P. Miranda, M. Grabisch, k-balanced games and capacities, European J. Oper. Res. 200 (2010) 465–472. P. Miranda, M. Grabisch, P. Gil, p-symmetric fuzzy measures, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10 (Suppl.) (2002) 105–123. G. Owen, Game Theory, Academic Press, 1995.
dspace.entity.typePublication
relation.isAuthorOfPublicationd940fcaa-13c3-4bad-8198-1025a668ed71
relation.isAuthorOfPublication.latestForDiscoveryd940fcaa-13c3-4bad-8198-1025a668ed71

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Miranda01.pdf
Size:
296.16 KB
Format:
Adobe Portable Document Format

Collections