Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory

Research Projects
Organizational Units
Journal Issue
To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.
© 2013 Iop Publishing Ltd. Autoria conjunta : Pierre Auger collaboration. Artículo firmado por mas de 400 autores We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atoomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientfico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparoa Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparoa Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, MEB111003, MSM0021620859, LA08015, TACR TA01010517 and GA U.K. 119810, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologa (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nr. 20/2012 and nr. 194/2012, project nr. 1/ASPERA2/2012 ERA-NET and PN-II-RU-PD-2011-3-0145-17, Romania; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; The Leverhulme Foundation, Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107, National Science Foundation, Grant No. 0450696, The Grainger Foundation U.S.A.; NAFOS-TED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.
UCM subjects
[1] For a recent review see e.g. R. Engel, D. Heck and T. Pierog, Extensive Air Showers and Hadronic Interactions at High Energy, Ann. Rev. Nucl. Part. Sci. 61 (2011) 467. [2] See e.g. T. K. Gaisser, Cosmic Rays and Particle Physics, Cambridge University Press, Cambridge, 1990. [3] J. Linsley, Spectra, anisotropies and composition of cosmic rays above 1000 GeV, rapporteur paper in Proc. 18th International Cosmic Ray Conference (ICRC), Bangalore, India, 12 (1983) 135. [4] J. Linsley, Proton-air and proton-proton cross sections from air shower data, in Proc. 19th International Cosmic Ray Conference (ICRC), San Diego, California, 6 (1985) 1. [5] J. Abraham et al. (Pierre Auger Collaboration), Measurement of the Depth of Maximum of Extensive Air Showers above 1018 eV, Phys. Rev. Lett. 104 (2010) 091101. [6] P. Facal San Luis for the Pierre Auger Collaboration, The distribution of shower maxima of UHECR air showers, in Proc. 32nd International Cosmic Ray Conference (ICRC), Beijing, China, 2 (2011) 225 and arXiv:1107.4804v1 [astro-ph.HE]. [7] See e.g. J. Matthews, A Heitler model of extensive air showers, Astropart. Phys. 22 (2005) 387 and references therein. [8] J. Linsley, Structure of large air showers at depth 834 g/cm2, in Proc. 15th International Cosmic Ray Conference (ICRC), Plovdiv, Bulgaria, 12 (1977), 89. [9] T. K. Gaisser et al., Elongation Rate of Air Showers and Implications for 1017-1018 eV Particle Interactions, in Proc. 16th International Cosmic Ray Conference (ICRC), Kyoto, Japan, 9 (1979), 275. [10] J. Linsley and A. A. Watson, Validity of scaling to 1020 eV and high-energy cosmic ray composition, Phys. Rev. Lett. 46 (1981), 459. [11] T. Pierog and K. Werner, Muon Production in Extended Air Shower Simulations, Phys. Rev. Lett., 101 (2008) 171101. [12] E. J. Ahn et al., Cosmic ray interaction event generator SIBYLL 2.1, Phys. Rev. D 80 (2009) 094003. [13] N. N. Kalmykov et al., Quark-gluon string model and EAS simulation problems at ultra-high energies, Nucl. Phys. B (Proc. Suppl.) 52 (1997), 17. [14] S. Ostapchenko, Non-linear screening effects in high energy hadronic interactions, Phys. Rev., D 74 (2006) 014026. [15] T. Pierog et al., First results of fast one-dimensional hybrid simulation of EAS using CONEX, Nucl. Phys. B (Proc. Suppl.) 151 (2006) 159. [16] D. J. Bird et al., Evidence for correlated changes in the spectrum and composition of cosmic rays at extremely high-energies, Phys. Rev. Lett. 71 (1993) 3401. [17] R. U. Abbasi et al. (HiRes Collaboration), A Study of the composition of ultrahigh energy cosmic rays using the High Resolution Fly’s Eye, Astroph. J. 622 (2005) 910;. [18] R. U. Abbasi et al. (HiRes Collaboration), Indications of Proton-Dominated Cosmic Ray Composition above 1.6 EeV, Phys. Rev. Lett. 104 (2010) 161101. [19] S. P. Knurenko and A. Sabourov, Spectrum and composition of cosmic rays in the energy range 1015 - 1018 eV derived from the Yakutsk array data, in Proc. 32nd International Cosmic Ray Conference (ICRC), Beijing, China, 1 (2011) 189. [20] C. Jui et al. (Telescope Array Collaboration), Cosmic Ray in the Northern Hemisphere: Results from the Telescope Array Experiment, Proc. APS DPF Meeting, (2011) Providence, RI, USA arXiv:1110.0133. [21] R. Walker and A. A. Watson, Measurement of the fluctuations in the depth of maximum of showers produced by primary particles of energy greater than 1.5 × 1017 eV, J. Phys. G 8 (1982) 1131. [22] D. Garcia-Pinto, for the Pierre Auger Collaboration, Measurements of the Longitudinal Development of Air Showers with the Pierre Auger Observatory, in Proc. 32nd International Cosmic Ray Conference (ICRC), Beijing, China, 2 (2011) 87 and arXiv:1107.4804v1 [astro-ph.HE]. [23] M. Unger, EAS Studies of Cosmic Rays above 1016 eV, rapporteur paper in Proc. 32nd International Cosmic Ray Conference (ICRC), Beijing, China, 12 (2011) 225. [24] L. Cazon and R. Ulrich, The non-linearity between hlnAi and hXmaxi induced by the acceptance of fluorescence telescopes, Astropart. Phys., 38 (2012) 41. [25] R. Pesce, for the Pierre Auger Collaboration, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory: an update, in Proc. 32nd International Cosmic Ray Conference (ICRC), Beijing, China, 2 (2011) 214 and arXiv:1107.4809 [astro-ph.HE]. [26] P. Abreu et al. (Pierre Auger Collaboration), Measurement of the proton-air cross-section at √s = 57 TeV with the Pierre Auger Observatory, Phys. Rev. Lett. 109 (2012) 062002. [27] A. A. Watson and J. G. Wilson, Fluctuation studies of large air showers: the composition of primary cosmic ray particles of energy Ep ∼ 1018 eV, J. Phys. A 7 (1974) 1199. [28] R. Walker and A. A. Watson, Measurement of the elongation rate of extensive air showers produced by primary cosmic rays of energy above 2 1017 eV, J. Phys., G 7 (1981) 1297. [29] K. H. Kampert and M. Unger, Measurements of the Cosmic Ray Composition with Air Shower Experiments, Astropart. Phys. 35 (2012) 660. [30] A. M. Taylor, M. Ahlers and F. A. Aharonian, The need for a local source of UHE CR nuclei, Phys.Rev., D 84 (2011) 105007. [31] D. Allard, Extragalactic propagation of ultrahigh energy cosmic-rays, Astropart. Phys. 39-40 (2012) 33 [32] J. Allen for the Pierre Auger Collaboration, Interpretation of the signals produced by showers from cosmic rays of 1019 eV observed in the surface detectors of the Pierre Auger Observatory, in Proc. 32nd International Cosmic Ray Conference (ICRC), Beijing, China, 2 (2011) 83 and arXiv:1107.4804v1 [astro-ph.HE]. [33] G. Rodriguez for the Pierre Auger Collaboration, Reconstruction of inclined showers at the Pierre Auger Observatory: implications for the muon contenty, in Proc. 32nd International Cosmic Ray Conference (ICRC), Beijing, China, 2 (2011) 95 and arXiv:1107.4809 [astro-ph.HE]. [34] W. Nelson et al., SLAC-265, Stanford Linear Accelerator Center (1985). [35] GEISHA, H. Fesefeldt, RWTH Aachen report PITHA 85/2 (1985).