Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Coupled reaction-diffusion equations with degenerate diffusivity: wavefront analysis

dc.contributor.authorMuñoz Hernández, Eduardo
dc.contributor.authorSovrano, Elisa
dc.contributor.authorTaddei, Valentina
dc.date.accessioned2025-08-29T08:45:16Z
dc.date.available2025-08-29T08:45:16Z
dc.date.issued2025-02-03
dc.description.abstractWe investigate traveling wave solutions for a nonlinear system of two coupled reaction-diffusion equations characterized by double degenerate diffusivity: \[n_t= -f(n,b), \quad b_t=[g(n)h(b)b_x]_x+f(n,b).\] These systems mainly appear in modeling spatial-temporal patterns during bacterial growth. Central to our study is the diffusion term $g(n)h(b)$, which degenerates at $n=0$ and $b=0$; and the reaction term $f(n,b)$, which is positive, except for $n=0$ or $b=0$. Specifically, the existence of traveling wave solutions composed by a couple of strictly monotone functions for every wave speed in a closed half-line is proved, and some threshold speed estimates are given. Moreover, the regularity of the traveling wave solutions is discussed in connection with the wave speed.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversità di Modena e Reggio Emilia, Italy
dc.description.sponsorshipMinistry of Science and Innovation of Spain
dc.description.statuspub
dc.identifier.citationMuñoz-Hernández, Eduardo, et al. «Coupled reaction-diffusion equations with degenerate diffusivity: wavefront analysis». Nonlinearity, vol. 38, n.o 3, marzo de 2025, p. 035002. DOI.org (Crossref), https://doi.org/10.1088/1361-6544/ada50d.
dc.identifier.doi10.1088/1361-6544/ada50d
dc.identifier.officialurlhttps://dx.doi.org/10.1088/1361-6544/ada50d
dc.identifier.relatedurlhttps://iopscience.iop.org/article/10.1088/1361-6544/ada50d
dc.identifier.urihttps://hdl.handle.net/20.500.14352/123514
dc.issue.number3
dc.journal.titleNonlinearity
dc.language.isoeng
dc.page.final34
dc.page.initial1
dc.publisherIOP Publishing (IOP Science)
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123343NB-I00/ES/ECUACIONES DIFERENCIALES HETEROGENEAS: DINAMICA Y NUMERICO/
dc.relation.projectIDCUP D53D23005620006
dc.relation.projectIDMIUR-PRIN 2020F3NCPX
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu517
dc.subject.keywordDegenerate diffusion
dc.subject.keywordCoupled reaction-diffusion equations
dc.subject.keywordTraveling wave solution
dc.subject.keywordWave speed
dc.subject.keywordSharp profile
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.19 Ecuaciones Diferenciales Ordinarias
dc.subject.unesco1202.20 Ecuaciones Diferenciales en derivadas Parciales
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleCoupled reaction-diffusion equations with degenerate diffusivity: wavefront analysis
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number38
dspace.entity.typePublication
relation.isAuthorOfPublication6257d3ed-79fd-46b2-a66b-f0c8b166abc7
relation.isAuthorOfPublication.latestForDiscovery6257d3ed-79fd-46b2-a66b-f0c8b166abc7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
25 MH-So-Ta NON.pdf
Size:
490.32 KB
Format:
Adobe Portable Document Format

Collections