Combination of attributes in stereovision matching for fish-eye lenses in forest analysis

dc.book.titleAdvanced Concepts for Intelligent Vision Systems, Proceedings
dc.contributor.authorCruz García, Jesús Manuel de la
dc.contributor.authorHerrera Caro, Pedro Javier
dc.contributor.authorPajares Martínsanz, Gonzalo
dc.contributor.authorGuijarro Mata-García, María
dc.contributor.authorRuz Ortiz, José Jaime
dc.date.accessioned2023-06-20T13:39:48Z
dc.date.available2023-06-20T13:39:48Z
dc.date.issued2009
dc.description© Springer-Verlag Berlin Heidelberg 2009. The authors wish to acknowledge to the Council of Education of the Autonomous Community of Madrid and the Social European Fund for the research contract with the first author. Also to Dr. Fernando Montes, from the Escuela Técnica Superior de Ingenieros de Montes at the Politechnical University of Madrid and to Dra. Isabel Cañellas from the Forest Research Centre (CIFOR, INIA) for his support and the imaged material supplied. To the DPI2006-15661-C02-01 project, a part of the research has been granted by it. Finally, to the anonymous three referees for their valuable comments and suggestions. International Conference on Advanced Concepts for Intelligent Vision Systems (11th. Sep 28-Oct 02, 2009. Bordeaux, Francia)
dc.description.abstractThis paper describes a novel stereovision matching approach by combining several attributes at the pixel level for omni-directional images obtained with fish-eye lenses in forest environments. The goal is to obtain a disparity map as a previous step for determining distances to the trees and then the volume of wood in the imaged area. The interest is focused on the trunks of the trees. Because of the irregular distribution of the trunks, the most suitable features are the pixels. A set of six attributes is used for establishing the matching between the pixels in both images of the stereo pair. The final decision about the matched pixels is taken by combining the attributes. Two combined strategies are proposed: the Sugeno Fuzzy Integral and the Dempster-Shafer theory. The combined strategies, applied to our specific stereo vision matching problem, make the main finding of the paper. In both, the combination is based on the application of three well known matching constraints. The proposed approaches are compared among them and favourably against the usage of simple features.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCIFOR
dc.description.sponsorshipINIA
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22596
dc.identifier.isbn978-3-642-04696-4
dc.identifier.officialurlhttp://link.springer.com/content/pdf/10.1007%2F978-3-642-04697-1_26.pdf
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53277
dc.language.isoeng
dc.page.final287
dc.page.initial277
dc.publisherSpringer-Verlag Berlin
dc.relation.projectIDDPI2006-15661-C02-01
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.keywordAlgorithms
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleCombination of attributes in stereovision matching for fish-eye lenses in forest analysis
dc.typebook part
dc.volume.number5807
dcterms.references1. Barnard, S., Fishler, M.: Computational Stereo. ACM Computing Surveys 14, 553–572(1982) 2. Cochran, S.D., Medioni, G.: 3-D Surface Description from binocular stereo. IEEE Trans. Pattern Anal. Machine Intell. 14(10), 981–994 (1992) 3. Scharstein, D., Szeliski, R.: A taxonomy and avaluation of dense two-frame stereo correspondence algorithms. Int. J. Computer Vision 47(1-3), 7–42 (2002), http://vision.middlebury.edu/stereo/ 4. Tang, L., Wu, C., Chen, Z.: Image dense matching based on region growth with adaptive window. Pattern Recognit. Lett. 23, 1169–1178 (2002) 5. Lew, M.S., Huang, T.S., Wong, K.: Learning and feature selection in stereo matching. IEEE Trans. Pattern Anal. Machine Intell. 16, 869–881 (1994) 6. Abraham, S., Förstner, W.: Fish-eye-stero calibration and epipolar rectification. Photogrammetry and Remote Sensing 59, 278–288 (2005) 7. Schwalbe, E.: Geometric Modelling and Calibration of Fisheye Lens Camera Systems. In: Proc. 2nd Panoramic Photogrammetry Workshop, Int. Archives of Photogrammetry and Remote Sensing, vol. 36, Part 5/W8 (2005) 8. Barnea, D.I., Silverman, H.F.: A Class of Algorithms for Fast Digital Image Registration. IEEE Trans. Computers 21, 179–186 (1972) 9. Koschan, A., Abidi, M.: Digital Color Image Processing. Wiley, Chichester (2008) 10. Klaus, A., Sormann, M., Karner, K.: Segmented-Based Stereo Matching Using Belief Propagation and Self-Adapting Dissimilarity Measure. In: Proc. of 18th Int. Conference on Pattern Recognition, vol. 3, pp. 15–18 (2006) 11. Pajares, G., de la Cruz, J.M.: Visión por Computador: Imágenes digitales y aplicaciones, RA-MA (2007) 12. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Chichester (2004) 13. Dempster, A.P.: A generalization of Bayesian inference. Journal of the Royal Statistical Society B 30, 205–247 (1968) 14. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
dspace.entity.typePublication
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublicationd5518066-7ea8-448c-8e86-42673e11a8ee
relation.isAuthorOfPublication59baddaa-b4d2-4f26-81a9-745602eb2b25
relation.isAuthorOfPublication.latestForDiscoveryd5518066-7ea8-448c-8e86-42673e11a8ee

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cruzgarcia14.pdf
Size:
333.5 KB
Format:
Adobe Portable Document Format