Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Characterization of Veronese varieties via projection in Grassmannians

dc.book.titleProjective varieties with unexpected properties
dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorPaoletti, Raffaella
dc.contributor.editorCiliberto, C.
dc.contributor.editorGeramita, A.V.
dc.contributor.editorHarbourne, B.
dc.contributor.editorM. Miró-Roig, R.M.
dc.contributor.editorRanestad, K.
dc.date.accessioned2023-06-20T13:39:16Z
dc.date.available2023-06-20T13:39:16Z
dc.date.issued2005
dc.descriptionA volume in memory of Giuseppe Veronese. Proceedings of the International Conference "Projective Varieties with Unexpected Properties'' held in Siena, June 8–13, 2004
dc.description.abstractLet G(r,m) denote the Grassmann variety of r-dimensional linear subspaces of Pm. To any linear projection Pm⇢Pm′, m′<m, there corresponds a rational map G(r,m)⇢G(r,m′) which will also be called a projection. In [J. Algebraic Geom. 8 (1999), no. 1, 85–101; MR1658212 (99k:14083)], E. Arrondo started the study of smooth subvarieties of Grassmann varieties having "deep'' isomorphic projections and proved that, under a certain additional assumption, the only smooth n-dimensional subvariety of G(1,2n+1) isomorphically projectable to G(1,n+1) is the Veronese subvariety of G(1,2n+1), defined as the locus of lines joining the corresponding points of two disjoint n-dimensional linear subspaces in P2n+1. More generally, a smooth subvariety X⊂G(d−1,N) is said to be k-projectable to G(d−1,M), 0≤k≤d−1, if there exists a projection π:G(d−1,N)⇢G(d−1,M) such that dimL∩L′<k for any two subspaces L,L′∈π(X). In the paper under review the authors extend this result to Grassmann varieties of higher-dimensional linear subspaces. To wit, they prove that, under certain assumptions, if X⊂G(d−1,nd+d−1) is 1-projectable to G(d−1,n+2d−3), then X is the d-tuple Veronese variety defined as the locus of Pd−1's spanned by the d-tuples of corresponding points of d copies of Pn in general position in Pnd+d−1. Unfortunately, the authors can only prove this under rather restrictive hypotheses, e.g. they assume that X has positive defect.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20855
dc.identifier.isbn978-3-11-018160-9
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53229
dc.language.isoeng
dc.page.final12
dc.page.initial1
dc.page.total392
dc.publication.placeBerlin
dc.publisherWalter de Gruyter
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordlinear subspaces
dc.subject.keywordLow codimension problems
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleCharacterization of Veronese varieties via projection in Grassmannians
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_ArrondoPaoletti.DG.pdf
Size:
198.86 KB
Format:
Adobe Portable Document Format