Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Semi-deterministic and genetic algorithms for global optimization of microfluidic protein folding devices

dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorHertzog, David E.
dc.contributor.authorMohammadi, Bijan
dc.contributor.authorSantiago, Juan G.
dc.date.accessioned2023-06-20T10:51:05Z
dc.date.available2023-06-20T10:51:05Z
dc.date.issued2006-04-09
dc.description.abstractIn this paper we reformulate global optimization problems in terms of boundary value problems (BVP). This allows us to introduce a new class of optimization algorithms. Indeed, current optimization methods, including non-deterministic ones, can be seen as discretizations of initial value problems for differential equations, or systems of differential equations. Furthermore, in order to reduce computational time approximate state and sensitivity evaluations are introduced during optimization. Lastly, we demonstrated the efficacy of two algorithms, included in the former class, on two academic test cases and on the design of a fast microfluidic protein folding device. The aim of the latter design is to reduce mixing times of proteins to microsecond timescales. Results are compared with those obtained with a classical genetic algorithm.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29461
dc.identifier.doi10.1002/nme.1562
dc.identifier.issn1097-0207
dc.identifier.officialurlhttp://onlinelibrary.wiley.com/doi/10.1002/nme.1562/abstract
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51336
dc.issue.number2
dc.journal.titleInternational Journal for Numerical Methods in Engineering
dc.language.isoeng
dc.page.final333
dc.page.initial319
dc.publisherWiley
dc.rights.accessRightsopen access
dc.subject.cdu517.938
dc.subject.cdu519.8
dc.subject.keywordShape optimization
dc.subject.keywordGlobal optimization
dc.subject.keywordDynamical systems
dc.subject.keywordBoundary value problem
dc.subject.keywordMicrofluidic mixers.
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco1207 Investigación Operativa
dc.titleSemi-deterministic and genetic algorithms for global optimization of microfluidic protein folding devices
dc.typejournal article
dc.volume.number66
dcterms.references[1] D. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison Wesley, 1989. [2] C. M. Fonseca and J. Fleming. An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation, 3(1):1–16, 1995. [3] B. Mohammadi and J-H. Saiac. Pratique de la simulation numérique. Dunod, 2002. [4] H. Attouch and R. Cominetti. A dynamical approach to convex minimization coupling approximation with the steepest descent method. J. Differential Equations, 128(2):519–540, 1996. [5] B. Ivorra, B. Mohammadi, and P. Redont. Low-complexity global optimization by solution of bvp. Journal of Global Optimization, submitted, 2005. [6] B. Mohammadi, J. Santiago, and J. Molho. Incomplete sensitivities in the design of minimal dispersion fluidic channels. Comput. Methods Appl. Mech. Engrg., 192:4131–4145, 2003. [7] B. Mohammadi, R. Bharadwadj, and J. Santiago. Design and optimization of on-chip capillary electrophoresis. Electrophoresis Journal, 23(16):2729–2744, 2002. [8] B. Mohammadi, J. Molho, A. Herr, J. Santiago, T. Kenny, R. Brennen, and Gordon G. Optimization of turn geometries for on-chip electrophoresis. Analytical Chemestry, 73(6):1350–1360, 2001. [9] D.E. Hertzog, X. Michalet, M. Jager, X. Kong, J.G. Santiago, S. Weiss, and O. Bakajin. Femtomole mixer for microsecond kinetic studies of protein folding. Analytical Chemistry, 75(24):7169–7178, 2004. [10] Roder H. Stepwise helix formation and chain compaction during protein folding. Proceedings of the National Academy of Sciences of the USA, 101:1793–1794, 2004. [11] C. M. Jones, E. R. Henry, Y. Hu, C.-K. Chan, S. D. Luck, A. Bhuyan, H. Roder, J. Hofrichter, and W. A. Eaton. Fast events in protein folding initiated by nanosecond laser photolysis. Proceedings of the National Academy of Sciences of the USA, 90:11860–11864, 1993. [12] S. J. Hagen and W. A. Eaton. Two-state expansion and collapse of a polypeptide. Journal of Molecular Biology, 301:1037–1045, 2000. [13] K. M. Pryse, T. G. Bruckman, B. W. Maxfield, and E. L. Elson. Kinetics and mechanism of the folding of cytochrome c. Biochemistry, 31(22):5127–5136, 1992. [14] M. Jacob, G. Holtermann, D. Perl, J. Reinstein, T. Schindler, M. A. Geeves, and F. X. Schmid. Microsecond folding of the cold shock protein measured by a pressure jump technique. Biochemistry, 38:2882–2891, 1999. [15] C.K. Chan, Y. Hu, S. Takahashi, D. L. Rousseau, and W. A. Eaton. Submillisecond protein folding kinetics studied by ultrarapid mixing. Proceedings of the National Academy of Sciences of the USA, 94:1779–1784, 1997. [16] Pollack L., M. W. Tate, N. C. Darnton, J. B. Knight, S. M. Gruner, W. A. Eaton, and R. H. Austin. Compactness of the denatured state of a fastfolding protein measured by submillisecond small angle x-ray scattering. Proceedings of the National Academy of Sciences of the USA, 96:10115–10117, 1999. [17] S.-H. Park, M. C. R. Shastry, and H. Roder. Folding dynamics of the b1 domain of protein g explored by ultrarapid mixing. Nature, Structural Biology, 6:943–947, 1999. [18] J. P. Brody, P. Yager, R.E. Goldstein, and R.H. Austin. Biotechnology at low reynolds numbers. Biophysical Journal, 71(6):3430–3441, 1996. [19] R. Russell, I.S. Millet, M.W. Tate, L.W. Kwok, B. Nakatani, S.M. Gruner, S.G.J. Mochrie, V.S. Pande, S. Doniach, D. Herschlag, and L. Pollack. Rapid compaction during rna folding. Proceedings of the National Academy of Sciences of the USA, 99:4266–4271, 2002. [20] J. B. Knight, A. Vishwanath, J. P. Brody, and R. H. Austin. Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Physical Review Letters, 80:3863–3866, 1998. [21] M. C. R. Shastry, S. D. Luck, and H. Roder. A continuous-flow capillary mixer to monitor reactions on the microsecond time scale. Biophysical Journal, 74:2714–2721, 1998. [22] L. Dumas, V. Herbert, and F. Muyl. Hybrid method for aerodynamic shape optimization in automotive industry. Computers and Fluids, 33(5):849–858, 2004. [23] B. Ivorra. Semi-deterministic global optimization. PhD. University of Montpellier 2, 2006. [24] B. Mohammadi and O. Pironneau. Applied Shape Optimization for Fluids. Oxford University Press, 2001. [25] G.N. Vanderplaats. Numerical optimization techniques for engineering design. Mc Graw-Hill, 1990. [26] L. Debiane, B. Ivorra, B. Mohammadi, F. Nicoud, A. Ern, T. Poinsot, and H. Pitsch. Temperature and pollution control in flames. In Proceeding of the Summer Program, pages 367–375, Center for Turbulence Research, NASA AMES/Stanford University, USA, 2004. [27] B. Mohammadi and O. Pironneau. Shape optimization in fluid mechanics. Annual Review of Fluid Mechanics., 36:255–279, 2004. [28] J. M. Ottino. The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, 1989. [29] N. Darnton, O. Bakajin, R. Huang, B. North, J. Tegenfeldt, E. Cox, J. Sturn, and R. H. Austin. Condensed matter. Journal of Physics, 13:4891–4902, 2001. [30] W. M. Deen. Analysis of Transport Phenomena. New York, Oxford University Press, 1998. [31] T. Hughes and A. Brooks. A multi-dimensional upwind scheme with no crosswind diffusion, in t. hughes, ed., finite element methods for convection dominated flows. ASME, New York, 34:19–35, 1979. [32] P. Deuflhard. A modified newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math., 32:289–315, 1974. [33] D.E. Hertzog, B. Ivorra, B. Mohammadi, O. Bakajin, and J.G. Santiago. Optimization of fast microfluidic mixers for protein folding. in preparation.
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublication.latestForDiscovery6d5e1204-9b8a-40f4-b149-02d32e0bbed2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ivorra31.pdf
Size:
599.85 KB
Format:
Adobe Portable Document Format

Collections