Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Isotropy theorem for cosmological Yang-Mills theories

dc.contributor.authorLópez Maroto, Antonio
dc.contributor.authorRuiz Cembranos, José Alberto
dc.contributor.authorNúñez Jareño, S. J.
dc.date.accessioned2023-06-19T13:24:25Z
dc.date.available2023-06-19T13:24:25Z
dc.date.issued2013-02-13
dc.description© 2013 American Physical Society. We thank Marco Peloso and Jose Beltrán Jiménez for useful comments. This work has been supported by MICINN (Spain) project numbers FIS2011-23000, FPA2011-27853-01, and Consolider-Ingenio MULTIDARK CSD2009-00064.
dc.description.abstractWe consider homogeneous non-Abelian vector fields with general potential terms in an expanding universe. We find a mechanical analogy with a system of N interacting particles (with N the dimension of the gauge group) moving in three dimensions under the action of a central potential. In the case of bounded and rapid evolution compared to the rate of expansion, we show by making use of a generalization of the virial theorem that for an arbitrary potential and polarization pattern, the average energy-momentum tensor is always diagonal and isotropic despite the intrinsic anisotropic evolution of the vector field. We consider also the case in which a gauge-fixing term is introduced in the action and show that the average equation of state does not depend on such a term. Finally, we extend the results to arbitrary background geometries and show that the average energy-momentum tensor of a rapidly evolving Yang-Mills field is always isotropic and has the perfect fluid form for any locally inertial observer.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25799
dc.identifier.doi10.1103/PhysRevD.87.043523
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.87.043523
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33570
dc.issue.number4
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2011-23000
dc.relation.projectIDFPA2011-27853-01
dc.relation.projectIDCSD2009-00064.
dc.relation.projectIDConsolider-Ingenio MULTIDARK
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordGauge-Flation
dc.subject.keywordInflation
dc.subject.keywordUniverso
dc.subject.keywordFields
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleIsotropy theorem for cosmological Yang-Mills theories
dc.typejournal article
dc.volume.number87
dcterms.references[1] L. H. Ford, Phys. Rev. D 40, 967 (1989). [2] C. Armendariz-Picon, J. Cosmol. Astropart. Phys. 07 (2004) 007. [3] C. G. Boehmer and T. Harko, Eur. Phys. J. C 50, 423 (2007). [4] T. Koivisto and D. F. Mota, J. Cosmol. Astropart. Phys. 08 (2008) 021; K. Bamba, S. ’i. Nojiri, and S. D. Odintsov, Phys. Rev. D 77, 123532 (2008). [5] B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. Lett. 102, 111301 (2009); A. E. Gumrukcuoglu, B. Himmmetoglu, and M. Peloso, Phys. Rev. D 81, 063528 (2010). [6] J. B. Jimenez and A. L. Maroto, Phys. Rev. D 78, 063005 (2008); J. Cosmol. Astropart. Phys. 03 (2009) 016; Phys. Lett. B 686, 175 (2010); E. Carlesi, A. Knebe, G. Yepes, S. Gottloeber, J. B. Jimenez, and A. L. Maroto, Mon. Not. R. Astron. Soc. 418, 2715 (2011). [7] K. Dimopoulos, Phys. Rev. D 74, 083502 (2006). [8] A. E. Nelson and J. Scholtz, Phys. Rev. D 84, 103501 (2011). [9] A. Golovnev, V. Mukhanov, and V. Vanchurin, J. Cosmol. Astropart. Phys. 06 (2008) 009. [10] A. Maleknejad, M. M. Sheikh-Jabbari, and J. Soda, arXiv:1212.2921 [11] K. Yamamoto, M.-a. Watanabe, and J. Soda, Classical Quantum Gravity 29, 145008 (2012); M.-a. Watanabe, S. Kanno, and J. Soda, Phys. Rev. Lett. 102, 191302 (2009); K. Murata and J. Soda, J. Cosmol. Astropart. Phys. 06 (2011) 037; A. Maleknejad and M. M. Sheikh-Jabbari, Phys. Rev. D 85, 123508 (2012). [12] J. Cervero and L. Jacobs, Phys. Lett. 78B, 427 (1978); M. Henneaux, J. Math. Phys. (N.Y.) 23, 830 (1982); Y. Hosotani, Phys. Lett. 147B, 44 (1984). [13] D.V. Galtsov and M. S. Volkov, Phys. Lett. B 256, 17 (1991); D.V. Gal’tsov, arXiv:0901.0115. [14] Y. Zhang, Phys. Lett. B 340, 18 (1994); Classical Quantum Gravity 13, 2145 (1996); E. Elizalde, CEMBRANOS, MAROTO, AND JAREN˜ O PHYSICAL REVIEW D 87, 043523 (2013) A. J. Lopez-Revelles, S. D. Odintsov, and S.Y. Vernov, arXiv:1201.4302. [15] J. A. R. Cembranos, C. Hallabrin, A. L. Maroto, and S. J. Núñez Jareño, Phys. Rev. D 86, 021301 (2012). [16] A. Maleknejad and M. M. Sheikh-Jabbari, arXiv:1102.1513; Phys. Rev. D 84, 043515 (2011); P. Adshead and M. Wyman, Phys. Rev. Lett. 108, 261302 (2012); Phys. Rev. D 86, 043530 (2012); K. Yamamoto, Phys. Rev. D 85, 123504 (2012); M.M. Sheikh-Jabbari, Phys. Lett. B 717, 6 (2012); A. Ghalee, Phys. Lett. B 717, 307 (2012); M. Noorbala and M. M. Sheikh-Jabbari, arXiv:1208.2807; K.-i. Maeda and K. Yamamoto arXiv:1210.4054; E. Dimastrogiovanni, M. Fasiello, and A. J. Tolley, arXiv:1211.1396. [17] R. Ticciati, Quantum Field Theory for Mathematicians (Cambridge University Press, Cambridge, 1999); M. E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder, CO, 1995). [18] M. S. Turner, Phys. Rev. D 28, 6 (1983). [19] C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980). [20] A. Z. Petrov, Einstein Spaces (Pergamon, Oxford, 1969). [21] N. Bartolo, S. Matarrese, M. Peloso, and A. Ricciardone, Phys. Rev. D 87, 023504 (2013).
dspace.entity.typePublication
relation.isAuthorOfPublicatione14691a1-d3b0-47b7-96d5-24d645534471
relation.isAuthorOfPublicationc5a4cc87-ceba-494d-95ab-d54b9b1a35e3
relation.isAuthorOfPublication.latestForDiscoverye14691a1-d3b0-47b7-96d5-24d645534471

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MarotoAL02libre.pdf
Size:
301.02 KB
Format:
Adobe Portable Document Format

Collections