On Lie algebras whose nilradical is (n−p)-filiform
dc.contributor.author | Ancochea Bermúdez, José María | |
dc.contributor.author | Campoamor Stursberg, Otto-Rudwig | |
dc.date.accessioned | 2023-06-20T18:42:59Z | |
dc.date.available | 2023-06-20T18:42:59Z | |
dc.date.issued | 2001 | |
dc.description.abstract | We prove first that every (n − p)-filiform Lie algebra, p ≤ 3, is the nilradical of a solvable, nonnilpotent rigid Lie algebra. We also analize howthis result extends to (n − 4)-filiform Lie algebras. For this purpose, we give a classificaction of these algebras and then determine which of the obtained classes appear as the nilradical of a rigid algebra. | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20948 | |
dc.identifier.doi | 10.1081/AGB-100000810 | |
dc.identifier.issn | 0092-7872 | |
dc.identifier.officialurl | https//doi.org/10.1081/AGB-100000810 | |
dc.identifier.relatedurl | http://www.tandfonline.com/doi/pdf/10.1081/AGB-100000810 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58411 | |
dc.issue.number | 1 | |
dc.journal.title | Communications in Algebra | |
dc.language.iso | eng | |
dc.page.final | 450 | |
dc.page.initial | 427 | |
dc.publisher | Taylor & Francis | |
dc.relation.projectID | PR156/97-7104 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.554.3 | |
dc.subject.keyword | Rigid | |
dc.subject.keyword | p-filiform | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | On Lie algebras whose nilradical is (n−p)-filiform | en |
dc.type | journal article | |
dc.volume.number | 29 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8afd7745-e428-4a77-b1ff-813045b673fd | |
relation.isAuthorOfPublication | 72801982-9f3c-4db0-b765-6e7b4aa2221b | |
relation.isAuthorOfPublication.latestForDiscovery | 8afd7745-e428-4a77-b1ff-813045b673fd |
Download
Original bundle
1 - 1 of 1