Wind turbine maximum power point tracking control based on unsupervised neural networks

dc.contributor.authorMuñoz-Palomeque, Eduardo
dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-09-13T13:56:40Z
dc.date.available2024-09-13T13:56:40Z
dc.date.issued2023
dc.description.abstractThe main control goal of a wind turbine (WT) is to produce the maximum energy in any operating region. When the wind speed is under its rated value, the control must aim at tracking the maximum power point of the best power curve for a specific WT. This is challenging due to the non-linear characteristics of the system and the environmental disturbances it is subjected to. Direct speed control (DSC) is one of the main techniques applied to address this problem. In this strategy, it is necessary to design a speed controller to adjust the generator torque so to follow the optimum generator speed. In this work, we improve the DSC by implementing this speed controller with a radial basis function neural network (NN). An unsupervised learning algorithm is designed to tune the weights of the NN so it learns the control law that minimizes the generator speed error. With this proposed unsupervised neural control methodology, the electromagnetic torque that allows the optimal power extraction is obtained, and thus the best power coefficient (⁠ ⁠) values. The proposal is tested on the OPENFAST non-linear model of the National Renewable Energy Laboratory 1.5 MW WT. Simulation results prove the good performance of this neuro-control approach as it maintains the WT variables into the appropriate range and tracks the rated operation values. It has been compared with the controller included in OPENFAST giving up to 7.87% more power.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationMuñoz-Palomeque E, Sierra-García JE, Santos M. Wind turbine maximum power point tracking control based on unsupervised neural networks. Journal of Computational Design and Engineering. 2023 Feb;10(1):108-21.
dc.identifier.doihttps://10.1093/jcde/qwac132
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108137
dc.issue.number1
dc.journal.titleJournal of Computational Design and Engineering
dc.language.isoeng
dc.page.final121
dc.page.initial108
dc.publisherOxford University Press
dc.relation.projectIDMCI/AEI/FEDER number RTI2018-094902-B-C21 and PDI2021-123543OB-C21.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordwind turbine
dc.subject.keywordMPPT
dc.subject.keywordradial basis function neural network
dc.subject.keyworddirect speed control
dc.subject.ucmInformática (Informática)
dc.subject.unesco3311.02 Ingeniería de Control
dc.titleWind turbine maximum power point tracking control based on unsupervised neural networks
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JCDE WT 2023.pdf
Size:
11 MB
Format:
Adobe Portable Document Format

Collections