Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Heat transport and thermal rectification in molecular junctions: a minimal model approach

Loading...
Thumbnail Image

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Abstract

Heat conduction properties are investigated in a molecular junction modeled as a two-strand ladder with strongly asymmetric thermal transport pathways. By confining anharmonic contributions to only one of the strands, it is shown that tuning of the interstrand coupling can lead to normal heat transport and to the emergence of a well-defined temperature gradient. More interestingly, thermal rectification is obtained around a critical value of the interstrand interaction and by appropriate asymmetries induced by the coupling to the thermal baths.

Research Projects

Organizational Units

Journal Issue

Description

©2011 American Physical Society. This work was supported by DFG-Projekt CU 44/20-1 Project No. MAT2010-17180 and by the South Korea Ministry of Education, Science and Technology Program “World Class University” under Contract No. R31-2008-000-10100-0. E.D. acknowledges financial support by MEC and the program Flores Valles-UCM. We acknowledge fruitful discussions with H. Sevincli and S. Avdoshenko.

Keywords

Collections