Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Testing the Robustness of Machine Learning Models Through Mutations

dc.conference.title16th International Conference Advances in Computational Collective Intelligence
dc.contributor.authorMéndez Hurtado, Manuel
dc.contributor.authorBenito Parejo, Miguel
dc.contributor.authorGarcía Merayo, María De Las Mercedes
dc.date.accessioned2025-04-10T14:11:35Z
dc.date.available2025-04-10T14:11:35Z
dc.date.issued2024-09-08
dc.description.abstractThe reliable performance of machine learning algorithms stands as a critical and foundational concern. Usually, scientific attention centres solely on this aspect when selecting among models. However, in real-world scenarios, datasets are vulnerable to human errors during data input. Consequently, algorithms must display consistency and resilience against such errors. We assert that, especially in real-world applications, the resilience is, akin to the performance, a critical characteristic when selecting one algorithm over another. To address this concern, we propose a novel methodology for assessing model robustness by evaluating models both before and after applying mutations to the dataset. To validate the effectiveness of this methodology, we analyse five commonly used machine learning algorithms in a case study concerning traffic flow forecasting in Madrid. In assessing the robustness of the models, we introduce two metrics derived from well-known regression measurements. The results clearly reveal that the random forest model shows the highest robustness, according to our analysis, and that different models can exhibit very different behaviours in terms of this aspect.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1007/978-3-031-70248-8_24
dc.identifier.isbn9783031702471
dc.identifier.isbn9783031702488
dc.identifier.issn1865-0929
dc.identifier.issn1865-0937
dc.identifier.urihttps://hdl.handle.net/20.500.14352/119490
dc.language.isoeng
dc.page.final320
dc.page.initial308
dc.relation.projectIDPID2021-122215NB-C31
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsembargoed access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordAlgorithms Robustness
dc.subject.keywordData Mutation
dc.subject.keywordDeep Learning
dc.subject.keywordMachine Learning
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleTesting the Robustness of Machine Learning Models Through Mutations
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication74c73c62-45dd-4596-8953-1d4d04f1c008
relation.isAuthorOfPublicationa5fe4cf9-8928-45d4-8e32-5d1f846e5eb9
relation.isAuthorOfPublication28ca46b8-d1eb-42e6-a6e2-f31b193b055b
relation.isAuthorOfPublication.latestForDiscovery74c73c62-45dd-4596-8953-1d4d04f1c008

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Testing the Robustness of Machine Learning.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format