Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Switched learning adaptive neuro-control strategy

dc.contributor.authorSierra García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-09-13T13:46:10Z
dc.date.available2024-09-13T13:46:10Z
dc.date.issued2021-09-10
dc.description.abstractThe generalized learning algorithm can be efficiently used as control strategy, but it has some drawbacks such as: sensitivity to the training dataset, poor robustness against changes in the system, difficulty to generate the control signals without destabilising the plant, tuning of the controller, etc. To overcome some of these issues, in this work a new switched neural adaptive control strategy is proposed. It is based on the combination of an adaptive artificial neural network, a PID regulator, an estimated inverse model of the plant and two switches to route the signals properly in the control scheme. The technique is described using the hybrid automata formalism. In order to test the validity of this proposal, it is applied to the control of a quadrotor unmanned aerial vehicle (UAV), subjected to changes in its mass and wind disturbances. Simulation results show how the on-line learning increases the robustness of the controller, reducing the effects of the mass change and of the wind on the UAV stabilization, thus improving the UAV trajectory tracking.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSierra-García JE, Santos M. Switched learning adaptive neuro-control strategy. Neurocomputing. 2021 Sep 10;452:450-64.
dc.identifier.doihttps://doi.org/10.1016/j.neucom.2019.12.139
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108129
dc.journal.titleNeurocomputing
dc.language.isoeng
dc.page.final464
dc.page.initial450
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordNeuro-control
dc.subject.keywordAdaptive control
dc.subject.keywordDisturbance rejection
dc.subject.keywordOnline learning
dc.subject.keywordNeural networks
dc.subject.keywordUnmanned aerial vehicle (UAV)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco3311.02 Ingeniería de Control
dc.titleSwitched learning adaptive neuro-control strategy
dc.typejournal article
dc.volume.number452
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Neurocomputing.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format

Collections