Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Log canonical thresholds of quasi-ordinary hypersurface singularities.

dc.contributor.authorBuder, Nero
dc.contributor.authorGonzález Pérez, Pedro Daniel
dc.contributor.authorGozález Villa, Manuel
dc.date.accessioned2023-06-20T03:33:24Z
dc.date.available2023-06-20T03:33:24Z
dc.date.issued2012
dc.description.abstractThe log canonical thresholds of irreducible quasi-ordinary hypersurface singularities are computed using an explicit list of pole candidates for the motivic zeta function found by the last two authors.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNSA
dc.description.sponsorshipMCI-Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21836
dc.identifier.issn0002-9939
dc.identifier.officialurlhttp://www.ams.org/journals/proc/2012-140-12/S0002-9939-2012-11416-9/S0002-9939-2012-11416-9.pdf
dc.identifier.relatedurlhttp://www.ams.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43858
dc.issue.number12
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final4083
dc.page.initial4075
dc.publisherAmerican Mathematical Society
dc.relation.projectIDH98230-11-1-0169.
dc.relation.projectIDMTM2010-21740-C02.
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordLog canonical threshold
dc.subject.keywordQuasi-ordinary singularity.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleLog canonical thresholds of quasi-ordinary hypersurface singularities.
dc.typejournal article
dc.volume.number140
dcterms.referencesS. S. Abhyankar, On the ramification of algebraic functions, Amer. J. Math. 77 (1955), 575–592. M. Aprodu and D. Naie, Enriques diagrams and log-canonical thresholds of curves on smooth surfaces. Geom. Dedicata 146 (2010), 43–66. E. Artal Bartolo, Pi. Cassou-Nogues, I. Luengo, and A.Melle-Hern´andez, On the logcanonical threshold for germs of plane curves. Singularities I, Contemp. Math., 474, Amer. Math. Soc., Providence, RI, 2008, pp. 1–14. Quasi-ordinary power series and their zeta functions, Mem. Amer. Math. Soc. 178 (2005), no. 841, vi+85 pp. N. Budur, Singularity invariants related to Milnor fibers: survey. To appear in Zeta Functions in Algebra and Geometry, Contemp. Math., Amer. Math. Soc. T. de Fernex, L. Ein, and M. Mustata, Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties. Duke Math. J. 152 (2010), no. 1, 93–114. J. Denef and F. Loeser, Geometry on arc spaces of algebraic varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., vol. 201, Birkhauser,Basel, 2001,pp. 327–348. V. Egorin, Characteristic varieties of algebraic curves.Ph.D. Thesis, University of Illinois at Chicago,2004, 80 pp. Y.-N. Gau, Embedded topological classification of quasi-ordinary singularities, Mem. Amer.Math. Soc. 74 (1988), no. 388, 109–129. With an appendix by Joseph Lipman. P. D. Gonzalez Perez, Toric embedded resolutions of quasi-ordinary hypersurface singularities,Ann. Inst. Fourier (Grenoble) 53 (2003), no. 6, 1819–1881. P. D. Gonzalez Perez and M. Gonz´alez Villa, Motivic Milnor fibre of a quasi-ordinary hypersurface.arXiv:1105.2480v1. J.-i. Igusa, On the first terms of certain asymptotic expansions. Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 357–368. L. H. Halle and J. Nicaise, Motivic zeta functions of abelian varieties, and the monodromy conjecture, Adv. Math. 227 (2011), no. 1, 610–653. Motivic zeta functions for degenerations of abelian varieties and Calabi-Yau varieties. arXiv:1012.4969. J. Kollar, Singularities of pairs. Algebraic geometry –Santa Cruz 1995, Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287. T. Kuwata, On log canonical thresholds of reducible plane curves. Amer. J. Math. 121 (1999),no. 4, 701–721. R. Lazarsfeld, Positivity in algebraic geometry. II.Positivity for vector bundles, and multiplier ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 49. Springer-Verlag, Berlin, 2004. J. Lipman, Topological invariants of quasi-ordinary singularities, Mem. Amer. Math. Soc. 74 (1988), no. 388, 1–107. M. Mustata, Singularities of pairs via jet schemes, J.Amer. Math. Soc. 15 (2002), 599–615. W. Veys and W. Zuniga-Galindo, Zeta functions for analytic mappings, log-principalization of ideals, and Newton polyhedra. Trans. Amer. Math. Soc. 360 (2008), no. 4, 2205–2227.
dspace.entity.typePublication
relation.isAuthorOfPublicationb7087753-f54f-4fdc-ac95-83b1b7fae921
relation.isAuthorOfPublication.latestForDiscoveryb7087753-f54f-4fdc-ac95-83b1b7fae921

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GPerez_Pedro06.pdf
Size:
200.12 KB
Format:
Adobe Portable Document Format

Collections