The pivotal role of interpretability in employee attrition prediction and decision-making

dc.book.titleThe leading role of smart ethics in the digital world
dc.contributor.authorMarín Díaz, Gabriel
dc.contributor.authorGalán Hernández, José Javier
dc.contributor.editorArias Oliva, Mario
dc.contributor.editorPelebrín Borondo, Jorge
dc.contributor.editorMurata, Kiyoshi
dc.contributor.editorSouto Romero, Mar
dc.date.accessioned2026-01-13T13:27:51Z
dc.date.available2026-01-13T13:27:51Z
dc.date.issued2024-03-01
dc.description.abstractThis article explores the evolution of machine learning (ML) algorithms, emphasizing the growing importance of interpretability in understanding automated decisions. Progress from early to advanced ML models highlights the need for better performance and adaptability. However, the inherent black-box nature of many ML algorithms raises challenges, underscoring the necessity for interpretability to improve transparency and accountability. Examining the evolution of interpretability in ML, the article showcases advancements in techniques facilitating human comprehension of decision-making processes. As ML becomes integral across domains, the article underscores the importance of interpretable models to bridge the gap between automated decisions and human understanding. The article delves into the changing role of humans in decision-making. Despite the efficiency of ML algorithms, the interpretability factor prompts a revaluation of human involvement, necessitating a balanced approach for ethical AI deployment. Furthermore, the article explores integrating decision-making methods like Analytic Hierarchy Process (AHP) to enhance interpretability. Proposing a framework that combines AHP with interpretable ML models, it suggests a structured approach for human-in-the-loop decision-making while considering feature importance.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipSIN FINANCIACIÓN
dc.description.statuspub
dc.identifier.citationMarín Díaz, G., & Galán Hernández, J. J. (2024). The pivotal role of interpretability in employee attrition prediction and decision-making. En J. Pelegrín-Borondo, M. Arias-Oliva, K. Murata, & M. Souto Romero (Eds.), The leading role of smart ethics in the digital world (pp. 265–275). Universidad de La Rioja.
dc.identifier.isbn978-84-09-58161-0
dc.identifier.officialurlhttps://dialnet.unirioja.es/servlet/articulo?codigo=9537214
dc.identifier.relatedurlhttps://dialnet.unirioja.es/servlet/libro?codigo=977710
dc.identifier.urihttps://hdl.handle.net/20.500.14352/130072
dc.language.isoeng
dc.page.final275
dc.page.initial265
dc.page.total312
dc.publication.placeLogroño, España
dc.publisherUniversidad de La Rioja
dc.relation.ispartofseriesEthicomp book series
dc.rights.accessRightsopen access
dc.subject.cdu004.85
dc.subject.cdu519.816
dc.subject.cdu519.22-7
dc.subject.cdu658
dc.subject.cdu658.3
dc.subject.keywordDecision-making
dc.subject.keywordMachine learning
dc.subject.keywordXAI
dc.subject.keywordInterpretability
dc.subject.keywordAI
dc.subject.keywordAHP
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmTeoría de la decisión
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.ucmInvestigación operativa (Estadística)
dc.subject.ucmAdministración de empresas
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1209.04 Teoría y Proceso de decisión
dc.subject.unesco5311.04 Organización de Recursos Humanos
dc.subject.unesco5311.07 Investigación Operativa
dc.titleThe pivotal role of interpretability in employee attrition prediction and decision-making
dc.typebook part
dc.type.hasVersionVoR
dc.volume.number1
dspace.entity.typePublication
relation.isAuthorOfPublicationdbf934cd-7a5b-4052-a128-5c68bf7d8b7e
relation.isAuthorOfPublicationf11206d7-9926-4f84-a47e-776cd56cea85
relation.isAuthorOfPublication.latestForDiscoverydbf934cd-7a5b-4052-a128-5c68bf7d8b7e
relation.isEditorOfPublication5cda89bb-8c5c-415b-a9fb-d024ad4d39d6
relation.isEditorOfPublication.latestForDiscovery5cda89bb-8c5c-415b-a9fb-d024ad4d39d6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pivotal role.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format