Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Transport coefficients and analytic continuation in dual (1+1)-dimensional models at finite temperature

dc.contributor.authorEvans, T. S.
dc.contributor.authorGómez Nicola, Ángel
dc.contributor.authorRivers, R. J
dc.contributor.authorSteer, D. A.
dc.date.accessioned2023-06-20T10:53:33Z
dc.date.available2023-06-20T10:53:33Z
dc.date.issued2003-03-31
dc.description© 2003 Elsevier Science B.V.. R.R. and T.S.E. thank PPARC for financial support. R.R., T.S.E. and D.A.S. thank the Universidad Complutense of Madrid for hospitality and financial support, the ESF for support through its COSLAB programme, and the Rockefeller Foundation at Bellagio for hospitality, where this work was completed. T.S.E. is grateful to CERN for a Visiting Fellowship during which part of this work was done. D.A.S. is grateful to the University of Geneva where part of this work was also done. All the authors thank the University of Salerno, in particular through the ERASMUS/SOCRATES programme, for hosting some of our discussions. A.G.N. thanks financial support from the Spanish CICYT project FPA2000-0956.
dc.description.abstractThe conductivity of a finite temperature (1 + 1)-dimensional fermion gas described by the massive Thirring model is shown to be related to the retarded propagator of the dual boson sine-Gordon model. Duality provides a natural resummation which resolves infra-red problems, and the boson propagator can be related to the fermion gas at non-zero temperature and chemical potential or density. In addition, at high temperatures, we can apply a dimensional reduction technique to find resummed closed expressions for the boson self-energy and relate them to the fermion conductivity. Particular attention is paid to the discussion of analytic continuation and to the link with integrable field theories. The resummation implicit in duality provides a powerful alternative to the standard diagrammatic evaluation of transport coefficients at finite temperature.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30494
dc.identifier.doi10.1016/S0550-3213(02)01145-8
dc.identifier.issn0550-3213
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0550-3213(02)01145-8
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51404
dc.issue.number3
dc.journal.titleNuclear physics B
dc.language.isoeng
dc.page.final403
dc.page.initial357
dc.publisherElsevier
dc.relation.projectIDFPA2000-0956
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordQuantum-field-theory
dc.subject.keywordHot gauge-theories
dc.subject.keywordMassive thirring models
dc.subject.keywordSine-gordon
dc.subject.keywordDimensional reduction
dc.subject.keywordQuantized conductance
dc.subject.keywordExpectation values
dc.subject.keywordLuttinger liquid
dc.subject.keywordGreen-functions
dc.subject.keywordPoint contacts
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleTransport coefficients and analytic continuation in dual (1+1)-dimensional models at finite temperature
dc.typejournal article
dc.volume.number654
dcterms.references[1] S. Jeon, L.G. Yaffe, Phys. Rev. D 53 (1996) 5799. [2] S. Jeon, Phys. Rev. D 52 (1995) 3591. [3] J.M. Luttinger, J. Math. Phys. 4 (1963) 1154. [4] F.D.M. Haldane, J. Phys. C 14 (1981) 2585. [5] S. Tomonaga, Prog. Theor. Phys. 5 (1950) 544. [6] W. Apel, T.M. Rice, Phys. Rev. B 26 (1982) 7063; C.L. Kane, M.P.A. Fisher, Phys. Rev. B 46 (1992) 15233; M. Ogata, H. Fukuyama, Phys. Rev. Lett. 73 (1994) 468. [7] S. Tarucha, T. Honda, T. Saku, Solid State Commun. 94 (1995) 413. [8] D.L. Maslov, M. Stone, Phys. Rev. B 52 (1995) R5539. [9] P. Fendley, A.W.W. Ludwig, H. Saleur, Phys. Rev. B 52 (1995) 8934; P. Fendley, A.W.W. Ludwig, H. Saleur, Phys. Rev. Lett. 74 (1995) 3005; F. Lesage, H. Saleur, Nucl. Phys. B 493 (1997) 613–629. [10] D. Birmingham, I. Sachs, S.N. Solodukhin, Conformal field theory interpretation of black hole quasi-normal modes, hep-th/0112055. [11] K. Yoshida, W. Souma, Phys. Rev. D 64 (2001) 125002, hep-th/0103075. [12] G. Parisi, N. Sourlas, Phys. Rev. Lett. 43 (1979) 744. [13] K. Yoshida, Phase structure of compact QED from the sine-Gordon/massive Thiring duality, hepth/0204086. [14] A. Gómez Nicola, R.J. Rivers, D.A. Steer, Nucl. Phys. B 570 (2000) 475–505, hep-th/9906236. [15] D. Delépine, R. González Felipe, J. Weyers, Phys. Lett. B 419 (1998) 296. [16] A. Gómez Nicola, D.A. Steer, Nucl. Phys. B 549 (1999) 409, hep-ph/9810519. [17] A.B. Zamolodchikov, Al.B. Zamolodchikov, Ann. Phys. (N.Y.) 120 (1979) 253. [18] F.A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, World Scientific, 1992. [19] A. LeClair, F. Lesage, S. Sachdev, H. Saleur, Nucl. Phys. B 482 (1996) 579; A. LeClair, G. Mussardo, Nucl. Phys. B 552 (1999) 624. [20] H. Saleur, Nucl. Phys. B 567 (2000) 602. [21] O. Castro-Alvaredo, A. Fring, Nucl. Phys. B 636 (2002) 611. [22] G. Delfino, J. Phys. A 34 (2001) L161. [23] S. Lukyanov, Nucl. Phys. B 612 (2001) 391. [24] R.F. Dashen, B. Hasslacher, A. Neveu, Phys. Rev. D 11 (1975) 3424. [25] J.I. Kapusta, Finite-Temperature Field Theory, Cambridge Univ. Press, 1989. [26] M. Le Bellac, Thermal Field Theory, Cambridge Univ. Press, 1996. [27] T.S. Evans, Z. Phys. C 36 (1987) 153. [28] T.S. Evans, Z. Phys. C 41 (1988) 333. [29] E.W. Fenton, Phys. Rev. B 46 (1992) 3754. [30] R.F. Álvarez-Estrada, A. Gómez Nicola, Phys. Rev. D 57 (1998) 3618. [31] P. Ginsparg, Nucl. Phys. B 170 (1980) 388. [32] T. Appelquist, R.D. Pisarski, Phys. Rev. D 23 (1981) 2305. [33] K. Kajantie, M. Laine, K. Rummukainen, M. Shaposnikov, Nucl. Phys. B 458 (1996) 90. [34] A. Lenard, J. Math. Phys. 2 (1961) 682. [35] S.F. Edwards, A. Lenard, J. Math. Phys. 3 (1962) 778. [36] R.D. Pisarski, Physica A 158 (1989) 146; R.D. Pisarski, Phys. Rev. Lett. 63 (1989) 1129. [37] J.C. Taylor, S.M. Wong, Nucl. Phys. 346 (1990) 115. [38] E. Braaten, R.D. Pisarski, Nucl. Phys. B 337 (1990) 569; E. Braaten, R.D. Pisarski, Phys. Rev. D 42 (1990) R2156. [39] G. Baym, N.D. Mermin, J. Math. Phys. 2 (1961) 232–234. [40] H.A. Weldon, Phys. Rev. D 28 (1983) 2007. [41] R.L. Kobes, G.W. Semenoff, Nucl. Phys. B 272 (1986) 329. [42] H.A. Weldon, Phys. Rev. D 58 (1998) 105002. [43] T.S. Evans, Nucl. Phys. B 374 (1992) 340. [44] T.S. Evans, Nucl. Phys. B 496 (1997) 486.
dspace.entity.typePublication
relation.isAuthorOfPublication574aa06c-6665-4e9a-b925-fa7675e8c592
relation.isAuthorOfPublication.latestForDiscovery574aa06c-6665-4e9a-b925-fa7675e8c592

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gnicola26libre.pdf
Size:
478.07 KB
Format:
Adobe Portable Document Format

Collections