Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Particle interactions in liquid magnetic colloids by zero field cooled measurements: effects on heating efficiency

dc.contributor.authorPresa Muñoz De Toro, Patricia Marcela De La
dc.contributor.authorLuengo, Y.
dc.contributor.authorVelasco, V.
dc.contributor.authorMorales, P. M.
dc.contributor.authorIglesias, M.
dc.contributor.authorVeintemillas-Verdaguer, S.
dc.contributor.authorCrespo del Arco, Patricia
dc.contributor.authorHernando Grande, Antonio
dc.date.accessioned2023-06-18T06:45:49Z
dc.date.available2023-06-18T06:45:49Z
dc.date.issued2015-05-21
dc.description© 2015 American Chemical Society. This work was supported by grants from the Spanish Ministry of Science and Innovation, MAT2012-37109-C02-01 and MAT2011-23641, Madrid Regional Government, S009/MAT- 1726, and Fundacion Mutua Madrileñaa (Spain).
dc.description.abstractThe influence of magnetic interactions in assemblies formed by either aggregated or disaggregated uniform gamma-Fe_2O_3 particles are investigated as a function of particle size, concentration, and applied field. Hyperthermia and magnetization measurements are performed in the liquid phase of colloids consisting of 8 and 13 nm uniform gamma-Fe_2O_3 particles dispersed in water and hexane. Although hexane allows the disagglomerated obtaining particle system; aggregation is observed in the case of water colloids. The zero field cooled (ZFC) curves show a discontinuity in the magnetization values associated with the melting points of water and hexane. Additionally, for 13 nm gamma-Fe_2O_3 dispersed in hexane, a second magnetization jump is observed that depends on particle concentration and shifts toward lower temperature by increasing applied field. This second jump is related to the strength of the magnetic interactions as it is only present in disagglomerated particle systems with the largest size, i.e., is not observed for 8 nm superparamagnetic particles, and surface effects can be discarded. The specific absorption rate (SAR) decreases with increasing concentration only for the hexane colloid, whereas for aqueous colloids, the SAR is almost independent of particle concentration. Our results suggest that, as a consequence of the magnetic interactions, the dipolar field acting on large particles increases with concentration, leading to a decrease of the SAR.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipFundacion Mutua Madrileña
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31316
dc.identifier.issn1932-7447
dc.identifier.officialurlhttp://dx.doi.org/10.1021/jp5115515
dc.identifier.relatedurlhttp://pubs.acs.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24079
dc.issue.number20
dc.journal.titleJournal of physical chemistry C
dc.language.isoeng
dc.page.final11030
dc.page.initial11023
dc.publisherAmer Chemical Soc
dc.relation.projectIDNANOBIOMAGNET-CM (S009/MAT-1726)
dc.relation.projectIDMAT2012-37109-C02-01
dc.relation.projectIDMAT2011-23641
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordGamma-Fe_2O_3 nanoparticles
dc.subject.keywordHyperthermia response
dc.subject.keywordOxide nanoparticles
dc.subject.keywordAbsorption rate
dc.subject.keywordSize
dc.subject.keywordCancer
dc.subject.ucmFísica de materiales
dc.titleParticle interactions in liquid magnetic colloids by zero field cooled measurements: effects on heating efficiency
dc.typejournal article
dc.volume.number119
dcterms.references(1) Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and Safety of Intratumoral Thermotherapy Using Magnetic Iron-Oxide Nanoparticles Combined with External Beam Radiotherapy on Patients with Recurrent Glioblastoma Multiforme. J. Neuro-Oncol. 2011, 103, 317−324. (2) Johannsen, M.; Thiesen, B.; Wust, P.; Jordan, A. Magnetic Nanoparticle Hyperthermia for Prostate Cancer. Int. J. Hyperthermia 2010, 26, 790−795. (3) Kolosnjaj-Tabi, J.; Di Corato, R.; Lartigue, L.; Marangon, I.; Guardia, P.; Silva, A. K. A.; Luciani, N.; Clement, O.; Flaud, P.; Singh, J. V.; et al. Heat-Generating Iron Oxide Nanocubes: Subtle “Destructurators” of the Tumoral Microenvironment. ACS Nano 2014, 8, 4268−4283. (4) Sánchez, C.; Diab, D. E.; Connord, V.; Clerc, P.; Meunier, E.; Pipy, B.; Payre, B.; Tan, R. P.; Gougeon, M.; Carrey, J.; et al. Targeting a G-Protein-Coupled Receptor Overexpressed in Endocrine Tumors by Magnetic Nanoparticles to Induce Cell Death. ACS Nano 2014, 8, 1350−1363. (5) Villanueva, A.; de la Presa, P.; Alonso, J. M.; Rueda, T.; Martínez, A.; Crespo, P.; Morales, M. P.; González-Fernández, M. A.; Valdes, J.; Rivero, G. Hyperthermia Hela Cell Treatment with Silica-Coated Manganese Oxide Nanoparticles. J. Phys. Chem. C 2010, 114, 1976− 1981. (6) Hervault, A.; Thanh, N. T. K. Magnetic Nanoparticle-Based Therapeutic Agents for Thermo- Chemotherapy Treatment of Cancer. Nanoscale 2014, 6, 11553−11573. (7) Silvio, D.; Rudolf, H. Magnetic Particle Hyperthermiaa Promising Tumour Therapy? Nanotechnology 2014, 25, 452001. (8) de la Presa, P.; Luengo, Y.; Multigner, M.; Costo, R.; Morales, M. P.; Rivero, G.; Hernándo, A. Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ- Fe_2O_3 Nanoparticles. J. Phys. Chem. C 2012, 116, 25602−25610. (9) Serantes, D.; Baldomir, D.; Martinez-Boubeta, C.; Simeonidis, K.; Angelakeris, M.; Natividad, E.; Castro, M.; Mediano, A.; Chen, D.-X.; Sánchez, A.; et al. Influence of Dipolar Interactions on Hyperthermia Properties of Ferromagnetic Particles. J. Appl. Phys. 2010, 108, 073918. (10) Haase, C.; Nowak, U. Role of Dipole-Dipole Interactions for Hyperthermia Heating of agnetic Nanoparticle Ensembles. Phys. Rev. B: Solid State 2012, 85, 045435. (11) Piñeiro-Redondo, Y.; Bañobre-Lopez, M.; Pardíñas-Blanco, I.; Goya, G.; López-Quintela, M.; Rivas, J. The Influence of Colloidal Parameters on the Specific Power Absorption of Paa-Coated Magnetite Nanoparticles. Nanoscale Res. Lett. 2011, 6, 1−7. (12) Martínez-Boubeta, C.; Simeonidis, K.; Serantes, D.; CondeLeboran, I.; Kazakis, I.; Stefanou, G.; Peñaa, L.; Galceran, R.; Balcells, L.; Monty, C.; et al. Adjustable Hyperthermia Response of SelfAssembled Ferromagnetic Fe-MgO Core−Shell Nanoparticles by Tuning Dipole−Dipole Interactions. Adv. Funct. Mater. 2012, 22, 3737−3744. (13) Verges, M. A.; Costo, R.; Roca, A. G.; Marco, J. F.; Goya, G. F.; Serna, C. J.; Morales, M. P. Uniform and Water Stable Magnetite Nanoparticles with Diameters around the Monodomain- Multidomain Limit. J. Phys. D: Appl. Phys. 2008, 41, 134003. (14) Carrey, J.; Mehdaoui, B.; Respaud, M. Simple Models for Dynamic Hysteresis Loop Calculations of Magnetic Single-Domain Nanoparticles: Application to Magnetic Hyperthermia Optimization. J. Appl. Phys. 2011, 109, 083921. (15) Usov, N. A. Low Frequency Hysteresis Loops of Superparamagnetic Nanoparticles with Uniaxial Anisotropy. J. Appl. Phys. 2010, 107, 123909. (16) Mehdaoui, B.; Meffre, A.; Carrey, J.; Lachaize, S.; Lacroix, L. M.; Gougeon, M.; Chaudret, B.; Respaud, M. Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study. Adv. Funct. Mater. 2011, 21, 4573−4581. (17) Mehdaoui, B.; Tan, R. P.; Meffre, A.; Carrey, J.; Lachaize, S.; Chaudret, B.; Respaud, M. Increase of Magnetic Hyperthermia Efficiency Due to Dipolar Interactions in Low-Anisotropy Magnetic Nanoparticles: Theoretical and Experimental Results. Phys. Rev. B: Solid State 2013, 87, 174419. (18) Garaio, E.; Sandre, O.; Collantes, J. M.; García, J. A.; Mornet, S.; Plazaola, F. Specific Absorption Rate Dependence on Temperature in Magnetic Field Hyperthermia Measured by Dynamic Hysteresis Losses (AC Magnetometry). Nanotechnology 2015, 26, 015704. (19) Landi, G. T. Role of Dipolar Interaction in Magnetic Hyperthermia. Phys. Rev. B: Solid State 2014, 89, 014403. (20) Burrows, F.; Parker, C.; Evans, R. F. L.; Hancock, Y.; Hovorka, O.; Chantrell, R. W. Energy Losses in Interacting Fine-Particle Magnetic Composites. J. Phys. D: Appl. Phys. 2010, 43, 474010. (21) Costo, R.; Bello, V.; Robic, C.; Port, M.; Marco, J. F.; Morales, M. P.; Veintemillas- Verdaguer, S. Ultrasmall Iron Oxide Nanoparticles for Biomedical Applications: Improving the Colloidal and Magnetic Properties. Langmuir 2012, 28, 178−185. (22) Massart, R. Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Trans. Magn. 1981, 17, 1247−1248. (23) Morales, M. P.; Veintemillas-Verdaguer, S.; Montero, M. I.; Serna, C. J.; Roig, A.; Casas, L.; Martinez, B.; Sandiumenge, F. Surface and Internal Spin Canting in Gamma- Fe_2O_3 Nanoparticles. Chem. Mater. 1999, 11, 3058−3064. (24) van Ewijk, G. A.; Vroege, G. J.; Philipse, A. P. Convenient Preparation Methods for Magnetic Colloids. J. Magn. Magn. Mater. 1999, 201, 31−33. (25) Gazeau, F.; Levy, M.; Wilhelm, C. Optimizing Magnetic Nanoparticle Design for Nanothermotherapy. Nanomedicine (London, U. K.) 2008, 3, 831−844. (26) Natividad, E.; Castro, M.; Mediano, A. Adiabatic vs. NonAdiabatic Determination of Specific Absorption Rate of Ferrofluids. J. Magn. Magn. Mater. 2009, 321, 1497−1500. (27) González-Fernández, M. A.; Torres, T. E.; Andrés-Verges, M.; Costo, R.; de la Presa, P.; Serna, C. J.; Morales, M. R.; Marquina, C.; Ibarra, M. R.; Goya, G. F. Magnetic Nanoparticles for Power Absorption: Optimizing Size, Shape and Magnetic Properties. J. Solid State Chem. 2009, 182, 2779−2784. (28) Dutz, S.; Hergt, R. The Role of Interactions in Systems of Single Domain Ferrimagnetic Iron Oxide Nanoparticles. J. Nano--Electron. Phys. 2012, 4, 02010. (29) Abbasi, A. Z.; Gutiérrez, L.; del Mercato, L. L.; Herránz, F.; Chubykalo-Fesenko, O.; Veintemillas-Verdaguer, S.; Parak, W. J.; Morales, M. P.; González, J. M.; Hernándo, A.; et al. Magnetic Capsules for NMR Imaging: Effect of Magnetic Nanoparticles Spatial Distribution and Aggregation. J. Phys. Chem. C 2011, 115, 6257−6264. (30) Di Corato, R.; Espinosa, A.; Lartigue, L.; Tharaud, M.; Chat, S.; Pellegrino, T.; Menager, C.; Gazeau, F.; Wilhelm, C. Magnetic Hyperthermia Efficiency in the Cellular Environment for Different Nanoparticle Designs. Biomaterials 2014, 35, 6400−6411. (31) Borin, D. Y.; Odenbach, S. Magnetic Measurements on Frozen Ferrofluids as a Method for Estimating the Magnetoviscous Effect. J. Phys: Condens. Matter 2009, 21, 246002. (32) Saville, S. L.; Qi, B.; Baker, J.; Stone, R.; Camley, R. E.; Livesey, K. L.; Ye, L.; Crawford, T. M.; Thompson Mefford, O. The Formation of Linear Aggregates in Magnetic Hyperthermia: Implications on Specific Absorption Rate and Magnetic Anisotropy. J. Colloid Interface Sci. 2014, 424, 141−151. (33) Klokkenburg, M.; Erné, B. H.; Meeldijk, J. D.; Wiedenmann, A.; Petukhov, A. V.; Dullens, R. P. A.; Philipse, A. P. In situ Imaging of Field-Induced Hexagonal Columns in Magnetite Ferrofluids. Phys. Rev. Lett. 2006, 97, 185702. (34) Serantes, D.; Simeonidis, K.; Angelakeris, M.; ChubykaloFesenko, O.; Marciello, M.; Morales, M. d. P.; Baldomir, D.; Martinez Boubeta, C. Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. J. Phys. Chem. C 2014, 118, 5927−5934. (35) Lacroix, L.-M.; Malaki, R. B.; Carrey, J.; Lachaize, S.; Respaud, M.; Goya, G. F.; Chaudret, B. Magnetic Hyperthermia in SingleDomain Monodisperse Feco Nanoparticles: Evidences for Stoner− Wohlfarth Behavior and Large Losses. J. Appl. Phys. 2009, 105, 023911. (36) Meffre, A.; Lachaize, S.; Gatel, C.; Respaud, M.; Chaudret, B. Use of Long Chain Amine as a Reducing Agent for the Synthesis of High Quality Monodisperse Iron(0) Nanoparticles. J. Mater. Chem. 2011, 21, 13464−13469. (37) Meffre, A.; Mehdaoui, B.; Kelsen, V.; Fazzini, P. F.; Carrey, J.; Lachaize, S.; Respaud, M.; Chaudret, B. A Simple Chemical Route toward Monodisperse Iron Carbide Nanoparticles Displaying Tunable Magnetic and Unprecedented Hyperthermia Properties. Nano Lett. 2012, 12, 4722−4728. (38) Wust, P.; Gneveckow, U.; Johannsen, M.; Bohmer, D.; Henkel, T.; Kahmann, F.; Sehouli, J.; Felix, R.; Ricke, J.; Jordan, A. Magnetic Nanoparticles for Interstitial Thermotherapy--Feasibility, Tolerance and Achieved Temperatures. Int. J. Hyperthermia 2006, 22, 673−685. (39) Hergt, R.; Dutz, S. Magnetic Particle Hyperthermia Biophysical Limitations of a Visionary Tumour Therapy. J. Magn. Magn. Mater. 2007, 311, 187−192.
dspace.entity.typePublication
relation.isAuthorOfPublication84282349-b588-49a8-812f-1f807d37d425
relation.isAuthorOfPublication930014e1-7363-41d3-b971-b824e05f84b2
relation.isAuthorOfPublication.latestForDiscovery930014e1-7363-41d3-b971-b824e05f84b2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HernandoGrande 107 postprint.pdf
Size:
7.63 MB
Format:
Adobe Portable Document Format

Collections