Fuzzy perfect maps and fuzzy paracompactness.

dc.contributor.authorGallego Lupiáñez, Francisco
dc.date.accessioned2023-06-20T16:51:55Z
dc.date.available2023-06-20T16:51:55Z
dc.date.issued1998
dc.description.abstractIn this paper we prove that S-paracompactness, S*-paracompactness, fuzzy paracompactness, and .-fuzzy paracompactness are invariants and inverse invariants of various types of fuzzy perfect maps.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15330
dc.identifier.doihppt://dx.doi.org/10.1016/S0165-0114(96)00353-3
dc.identifier.issn0165-0114
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0165011496003533
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57267
dc.issue.number1
dc.journal.titleFuzzy Sets and Systems
dc.language.isoeng
dc.page.final140
dc.page.initial137
dc.publisherElsevier Science Bv
dc.rights.accessRightsrestricted access
dc.subject.cdu510.64
dc.subject.keywordFuzzy perfect map
dc.subject.keywordS-paracompactness
dc.subject.keywordS*-paracompactness
dc.subject.keywordfuzzy
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco1102.14 Lógica Simbólica
dc.titleFuzzy perfect maps and fuzzy paracompactness.
dc.typejournal article
dc.volume.number98
dcterms.referencesA. Biilbiil and M.W. Warner, On the goodness of some types of fuzzy paracompactness, Fuzzy Sets and Systems 55 (1993) 187-191. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190. F.T. Christoph, Quotient fuzzy topology and local compactness, J. Math. Anal. Appl. 57 (1977) 497-504. M.E.A. El-Monsef, F.M. Zeyada, S.N. E1-Deeb and I.M. Hanafy, Good extensions of paracompactness, Math. Japon 37 (1992) 195-200. B. Ghosh, Directed family of fuzzy sets and fuzzy perfect maps, Fuzzy Sets and Systems 75 (1995) 93-101. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal Appl. 56 (1976) 621-633. R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. AppL 64 (1978) 446-454. M.K. Luo, Paracompactness in fuzzy topological spaces, J. Math. Anal. Appl. 130 (1988) 55-77. P.-M. Pu and Y.-M. Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. AppL 76 (1980) 571-599. R. Srivastava and S.N. Lal, On fuzzy proper maps, Mat. Vesnik 38 (1986) 337-342. C.K. Wong, Fuzzy topology: product and quotient theorems, J.Math. Anal AppL 45 (1974) 512-521.
dspace.entity.typePublication
relation.isAuthorOfPublicationd690c2bd-762b-4bd2-a8ba-11c504ad15d5
relation.isAuthorOfPublication.latestForDiscoveryd690c2bd-762b-4bd2-a8ba-11c504ad15d5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
36.pdf
Size:
260.14 KB
Format:
Adobe Portable Document Format

Collections