Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Extreme Inaccuracies In Gaussian Bayesian Networks

Loading...
Thumbnail Image

Full text at PDC

Publication date

2008

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Gómez Villegas, M. Á., Main Yaque, P. & Susi García, M. R. «Extreme Inaccuracies in Gaussian Bayesian Networks». Journal of Multivariate Analysis, vol. 99, n.o 9, octubre de 2008, pp. 1929-40. DOI.org (Crossref), https://doi.org/10.1016/j.jmva.2008.02.027.

Abstract

To evaluate the impact of model inaccuracies over the network’s output, after the evidence propagation, in a Gaussian Bayesian network, a sensitivity measure is introduced. This sensitivity measure is the Kullback–Leibler divergence and yields different expressions depending on the type of parameter to be perturbed, i.e. on the inaccurate parameter. In this work, the behavior of this sensitivity measure is studied when model inaccuracies are extreme,i.e. when extreme perturbations of the parameters can exist. Moreover, the sensitivity measure is evaluated for extreme situations of dependence between the main variables of the network and its behavior with extreme inaccuracies. This analysis is performed to find the effect of extreme uncertainty about the initial parameters of the model in a Gaussian Bayesian network and about extreme values of evidence. These ideas and procedures are illustrated with an example.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections