Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An LSTM-based Neural Network Wearable System for Blood Glucose Prediction in People with Diabetes

dc.contributor.authorTena, Felix
dc.contributor.authorGarnica Alcázar, Antonio Óscar
dc.contributor.authorLanchares Dávila, Juan
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.date.accessioned2025-01-30T16:21:32Z
dc.date.available2025-01-30T16:21:32Z
dc.date.issued2023
dc.description.abstractThis article proposes the first hardware implemen-tation of a low-power LSTM neural network targeting a wearable medical device designed to predict blood glucose at a 30-minute horizon. This work aims to reduce energy consumption by propos-ing new activation functions that target hardware implementation. On top of this proposal, we also prove there is room for improve-ment in energy consumption by applying neural network optimiza-tions at the algorithmic, such as quantization, and architecture level, LSTM hyperparameters, that consider the target hardware. To validate our proposal, we devise an optimized version of the neural network aimed to be wearable and, therefore, to reduce its energy consumption while preserving its accuracy as much as possible. The hardware is implemented on a Xilinx Virtex-7 FPGA VC707 Evaluation Kit. It is compared with (i) a faithful design of the original neural network implemented on the same evaluation kit, (ii) three state-of-the-art LSTM-based FPGA implementations, and (iii) software implementations running in cutting-edge smartphones:OnePlus NordTM and an Apple iPhone 13 ProTM with artificial in-telligence hardware accelerators. Our proposal consumes between ×1020 and ×7 less energy than the software implementations, being the most efficient system compared to the smartphones. On the other hand, its energy efficiency, measured in GFLOP/J, is between ×2.84 and ×7.82 greater than other state-of-the-art LSTM implementations, proving to be the most suitable implementation for a wearable system for blood glucose prediction.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1109/jbhi.2023.3300511
dc.identifier.issn2168-2194
dc.identifier.issn2168-2208
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117393
dc.journal.titleIEEE Journal of Biomedical and Health Informatics
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordArtificial neural networks
dc.subject.keywordBlood glucose prediction
dc.subject.keywordDeep learning
dc.subject.keywordDiabetes
dc.subject.keywordEnergy consumption in neural networks
dc.subject.keywordFPGA
dc.subject.keywordWearable sensors
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleAn LSTM-based Neural Network Wearable System for Blood Glucose Prediction in People with Diabetes
dc.typejournal article
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublication33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e
relation.isAuthorOfPublication16573486-e80c-4ffd-903b-35cffc604780
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscovery33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An_LSTM-based_Neural_Network_Wearable_System_for_Blood_Glucose_Prediction_in_People_with_Diabetes (4).pdf
Size:
12.19 MB
Format:
Adobe Portable Document Format

Collections