Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Slow and fast invasion waves in a model of acid-mediated tumour growth

dc.contributor.authorFasano, A.
dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorRodrigo, Marianito R.
dc.date.accessioned2023-06-20T00:15:37Z
dc.date.available2023-06-20T00:15:37Z
dc.date.issued2009-07
dc.description.abstractThis work is concerned with a reaction-diffusion system that has been proposed as a model to describe acid-mediated cancer invasion. More precisely, we consider the properties of travelling waves that can be supported by such a system, and show that a rich variety of wave propagation dynamics, both fast and slow, is compatible with the model. In particular, asymptotic formulae for admissible wave profiles and bounds on their wave speeds are provided.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Contract
dc.description.sponsorshipJunta de Andalucia
dc.description.sponsorshipMICINN Research
dc.description.sponsorshipUniversidad Complutense Programme for Distinguished Visitors
dc.description.sponsorshipItalian PRIN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16223
dc.identifier.doi10.1016/j.mbs.2009.04.001
dc.identifier.issn0025-5564
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0025556409000698
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42287
dc.issue.number1
dc.journal.titleMathematical Biosciences
dc.language.isoeng
dc.page.final56
dc.page.initial45
dc.publisherElsevier Science Inc
dc.relation.projectIDMRTN-CT-2004-503361
dc.relation.projectIDE-1268
dc.relation.projectIDMTM2008-01867
dc.rights.accessRightsrestricted access
dc.subject.cdu519.87
dc.subject.cdu616-006
dc.subject.cdu51-76
dc.subject.keywordReaction-diffusion systems
dc.subject.keywordTumour growth
dc.subject.keywordAsymptotic methods
dc.subject.keywordMathematical biology
dc.subject.keywordCancer-cell invasion
dc.subject.keywordh+-ion mobility
dc.subject.keywordmalignant invasion
dc.subject.keywordventricular myocyte
dc.subject.keywordexcitable media
dc.subject.keyworddiffusion
dc.subject.keywordtissue
dc.subject.ucmBiomatemáticas
dc.subject.ucmOncología
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco2404 Biomatemáticas
dc.subject.unesco3201.01 Oncología
dc.subject.unesco1207 Investigación Operativa
dc.titleSlow and fast invasion waves in a model of acid-mediated tumour growth
dc.typejournal article
dc.volume.number220
dcterms.referencesD. Ambrosi, F. Mollica, Mechanical models in tumour growth, in: L. Preziosi (Ed.), Cancer Modelling and Simulation, Chapman and Hall, 2003, p. 121. A.R.A. Anderson, M.A.J. Chaplain, E.L. Newman, R.J.C. Steele, A.M. Thompson, Mathematical modelling of tumour invasion and metastasis, J. Theor. Med. 2 (2000) 129. A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, ATP production and necrosis formation in a tumour spheroid model, Math. Modell. Nat. Phenom. 2 (2007) 30. N. Bellomo, M.L. Bertotti, S. Motta, Cancer immune system competition: modelling and bifurcation problems, in: L. Preziosi (Ed.), Cancer Modelling and Simulation, Chapman and Hall, 2003, p. 299. N. Bellomo, N.K. Li, P.K. Maini, On the foundations of cancer modelling: selected topics, speculations, and perspectives, Math. Mod. Meth. Appl. Sci. 18 (4) (2008) 1. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978. L. Bianchini, A. Fasano, A model combining acid-mediated tumour invasion and nutrient dynamics, Nonlinear Anal. Real World Appl. 10 (2009) 1955. H.M. Byrne, Modelling avascular tumour growth, in: L. Preziosi (Ed.), Cancer Modelling and Simulation, Chapman and Hall, 2003, p. 75. H.M. Byrne, M.A.J. Chaplain, G.J. Pettet, D.L.S. McElwain, A mathematical model of trophoblast invasion, J. Theor. Med. 1 (1999) 275. M.A.J. Chaplain, A.R.A. Anderson, Mathematical modelling of tissue invasion, in: L. Preziosi (Ed.), Cancer Modelling and Simulation, Chapman and Hall, 2003, p. 269. M.A.J. Chaplain, G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci. 15 (2005) 1685. R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937) 353. R.A. Gatenby, Models of tumour–host interaction as competing populations: Implications for tumour biology and treatment, J. Theor. Biol. 4 (21) (1995) 447. R.A. Gatenby, E.T. Gawlinski, A reaction–diffusion model for cancer invasion, Cancer Res. 56 (1996) 5745. R.A. Gatenby, E.T. Gawlinski, The glycolitic phenotype in carcinogenesis and tumour invasion: insights through mathematical modelling, Cancer Res. 63 (2003) 3847. A. Gerisch, M.A.J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: Local and nonlocal models and the effect of adhesion, J. Theor. Biol. 250 (2008) 684. H.P. Greenspan, Models for the growth of a solid tumour by diffusion, Stud. Appl. Math. 51 (1972) 317. J.P. Keener, Waves in excitable media, SIAM J. Appl. Math. 39 (1980) 528. J.P. Keener, A geometrical theory for spiral waves in excitable media, SIAM J. Appl. Math. 46 (1986) 1039. A.A. Kolmogorov, I.G. Petrovsky, N.S. Piskunov, Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem, vol. 17, 1937, Bul. Moskovskovo Gos. Univ., Academic Press., p. 1. (in Russian). The Dynamics of Curved Fronts, (P. Pelcé (Ed.), Trans), 1988 (Original work published 1937). B.P. Marchant, J. Norbury, A.J. Perumpani, Travelling shock waves arising in a model of malignant invasion, SIAM J. Appl. Math. 60 (2) (2000) 463. B.P. Marchant, J. Norbury, J.A. Sherratt, Travelling wave solutions to a haptotaxis-dominated model of malignant invasion, Nonlinearity 14 (6) (2001) 1653. A.S. Mikhailov, Foundations of Synergetics I, Springer-Verlag, Heidelberg, 1994. A.J. Perumpani, J.A. Sherratt, J. Norbury, Biological inferences from a mathematical model for malignant invasion, Invasion Metastasis 16 (4–5) (1996) 209. A.J. Perumpani, J.A. Sherratt, J. Norbury, H.M. Byrne, A two-parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix-mediated cellular invasion, Physica D 126 (1999) 145. J.A. Sherratt, B.P. Marchant, Non-sharp travelling wave fronts in the Fisher equation with degenerate nonlinear diffusion, Appl. Math. Lett. 9 (5) (1996) 33. K. Smallbone, D.J. Gavaghan, R.A. Gatenby, P.K. Maini, The role of acidity in solid tumour growth and invasion, Br. J. Radiol. 76 (2005) S11. P. Swietach, K.W. Spitzer, R.D. Vaughan-Jones, pH-dependence of extrinsic and intrinsic Hþ-ion mobility in the rat ventricular myocyte, investigated using flash photolysis of a caged-Hþ compound, Biophys. J. 15 (2007) 641. R.D. Vaughan-Jones, B.E. Peercy, J.P. Keener, K.W. Spitzer, Intrinsic Hþ-ion mobility in the rabbit ventricular myocyte, J. Physiol. 541 (1) (2002) 139. R. Venkatasasubramian, M.A. Henson, N.S. Forbes, Incorporating energy metabolism into a growth model of multicellular tumour spheroids, J. Theor. Biol. 242 (2006) 440. A.T. Winfree, The Geometry of Biological Time, Springer-Verlag, Heidelberg, 1980. A.T. Winfree, When Time Breaks Down, Princeton University Press, Princeton, 1987.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero07.pdf
Size:
570.44 KB
Format:
Adobe Portable Document Format

Collections