Immirzi ambiguity in the kinematics of quantum general relativity
dc.contributor.author | Garay Elizondo, Luis Javier | |
dc.contributor.author | Mena Marugán, Guillermo A. | |
dc.date.accessioned | 2023-06-20T19:18:50Z | |
dc.date.available | 2023-06-20T19:18:50Z | |
dc.date.issued | 2002-07-15 | |
dc.description | © 2002 The American Physical Society. G.A.M.M. is very thankful to J.F. Barbero G. for enlightening discussions. This work was supported by funds provided by the Spanish Ministry of Science and Technology under the Research Project No. BFM2001-0213. | |
dc.description.abstract | The Immirzi ambiguity arises in loop quantum gravity when geometric operators are represented in terms of different connections that are related by means of an extended Wick transform. We analyze the action of this transform in gravity coupled with matter fields and discuss its analogy with the Wick rotation on which the Thiemann transform between Euclidean and Lorentzian gravity is based. In addition, we prove that the effect of this extended Wick transform is equivalent to a constant scale transformation as far as the symplectic structure and kinematical constraints are concerned. This equivalence is broken in the dynamical evolution. Our results are applied to the discussion of the black hole entropy in the limit of large horizon areas. We first argue that, since the entropy calculation is performed for horizons of fixed constant area, one might in principle choose an Immirzi parameter that depends on this quantity. This would spoil the linearity with the area in the entropy formula. We then show that the Immirzi parameter appears as a constant scaling in all the steps where dynamical information plays a relevant role in the entropy calculation. This fact, together with the kinematical equivalence of the Immirzi ambiguity with a change of scale, is used to preclude the potential nonlinearity of the entropy on physical grounds. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministry of Science and Technology | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/29883 | |
dc.identifier.doi | 10.1103/PhysRevD.66.024021 | |
dc.identifier.issn | 0556-2821 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevD.66.024021 | |
dc.identifier.relatedurl | http://journals.aps.org | |
dc.identifier.relatedurl | http://arxiv-web2.library.cornell.edu/pdf/gr-qc/0205021.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59513 | |
dc.issue.number | 2 | |
dc.journal.title | Physical review D | |
dc.language.iso | eng | |
dc.publisher | Amer Physical Soc | |
dc.relation.projectID | BFM2001-0213. | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Hamiltonian-formulation | |
dc.subject.keyword | Gravity | |
dc.subject.keyword | Parameter | |
dc.subject.keyword | Variables | |
dc.subject.keyword | Matter | |
dc.subject.keyword | Real | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Immirzi ambiguity in the kinematics of quantum general relativity | |
dc.type | journal article | |
dc.volume.number | 66 | |
dcterms.references | [1] A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986); Phys. Rev. D 36, 1587 (1987). [2] A. Ashtekar, in Lectures on Non-Perturbative Canonical Gravity, edited by L.Z. Fang and R. Ruffini (World Scientific, Singapore, 1991). [3] A. Ashtekar, J.D. Romano, and R.S. Tate, Phys. Rev. D 40, 2572 (1989). [4] T. Thiemann, Class. Quantum Grav. 13, 1383 (19969. [5] A. Ashtekar, Phys. Rev. D 53, 2865 (1996). [6] G.A. Mena Maruga´n, Gravitation Cosmol. 4, 257 [1998]. [7] L.J. Garay and G.A. Mena Marugán, Class. Quantum Grav. 15, 3763 (1998). [8] J.F. Barbero G., Phys. Rev. D 51, 5507 (1995). [9] C. Rovelli, Living Rev. Relativ. 1, 1 (1998). [10] G. Immirzi, Nucl. Phys. B (Proc. Suppl.) 57, 65 (1997); Class. Quantum Grav. 14, L177 (1997). [11] S. Alexandrov, Class. Quantum Grav. 17, 4255 (2000); Phys. Rev. D 65, 024011 (2001); gr- qc/0201087; S. Alexandrov and D. Vassilevich, Phys. Rev. D 64, 044023 (2001); N. Barros e Sá, Int. J. Mod. Phys. D 10, 261 (2001). [12] J. Samuel, Class. Quantum Grav. 17, L141 (2000). [13] C. Rovelli and T. Thiemann, Phys. Rev. D 57, 1009 (1998). [14] J. Samuel, Phys. Rev. D 64, 048501 (2001). [15] G.A. Mena Maruga´n, Class. Quantum Grav. 19, L63 (2002). [16] A. Corichi and K.V. Krasnov, Phys. Lett. A 13, 1339 (1998). [17] R. Gambini, O. Obregón, and J. Pullin, Phys. Rev. D 59, 047505 (1999). [18] M. Montesinos, Class. Quantum Grav. 18, 1847 (2001). [19] M. Rainer, Gravitation Cosmol. 6, 181 (2000). [20] K. Krasnov, Class. Quantum Grav. 15, L1 [19989. [21] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys. Rev. Lett. 80, 904 (1998). [22] A. Ashtekar, J.C. Baez, and K. Krasnov, Adv. Theor. Math. Phys. 4, 1 (2001); T. Thiemann, gr-qc/0110034. [23] A. Ashtekar, A. Corichi, and K. Krasnov, Adv. Theor. Math. Phys. 3, 419 [2000]. [24] This extended Wick transform should not be mistaken for the Thiemann transform [4,5], which is sometimes referred to as the generalized Wick transform. [25] Our notation does ot make distinctions between fields that depend on the different time coordinates corresponding, respectively, to the original and scaled lapses N and Rg+N. This differs from the notation adopted in Ref. [27], where Euclidean and Lorentzian fields were distinguished for the case of the Wick rotation. [26] A. Ashtekar, and J. Lewandowsky, Class. Quantum Grav. 14, A55 (1997). [27] T. Padmanabhan, gr-qc/0202078; gr-qc/0202080. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5638c18d-1c35-40d2-8b77-eb558c27585e | |
relation.isAuthorOfPublication.latestForDiscovery | 5638c18d-1c35-40d2-8b77-eb558c27585e |
Download
Original bundle
1 - 1 of 1