Generic behavior of asymptotically holomorphic Lefschetz pencils.
dc.contributor.author | Amorós, Jaume | |
dc.contributor.author | Muñoz, Vicente | |
dc.contributor.author | Presas, Francisco | |
dc.date.accessioned | 2023-06-20T10:34:40Z | |
dc.date.available | 2023-06-20T10:34:40Z | |
dc.date.issued | 2004 | |
dc.description.abstract | We prove that the vanishing spheres of the Lefschetz pen- cils constructed by Donaldson on symplectic manifolds of any dimension are conjugated under the action of the symplec- tomorphism group of the fiber. More precisely, a number of generalized Dehn twists may be used to conjugate those spheres. This implies the non-existence of homologically triv-ial vanishing spheres in these pencils. To develop the proof,we discuss some basic topological properties of the space of asymptotically holomorphic transverse sections. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CICYT | |
dc.description.sponsorship | Research Training Network | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21175 | |
dc.identifier.issn | 1527-5256 | |
dc.identifier.officialurl | http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.jsg/1118755326 | |
dc.identifier.relatedurl | http://projecteuclid.org | |
dc.identifier.relatedurl | http://arxiv.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50618 | |
dc.issue.number | 3 | |
dc.journal.title | The Journal of Symplectic Geometry | |
dc.language.iso | eng | |
dc.page.final | 392 | |
dc.page.initial | 377 | |
dc.publisher | International Press | |
dc.relation.projectID | BFM2003–06001 | |
dc.relation.projectID | BFM2000–0024. | |
dc.relation.projectID | BFM2000–0024 | |
dc.relation.projectID | HPRN-CT-2000-00101. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 514 | |
dc.subject.keyword | Symplectic | |
dc.subject.keyword | Lefschetz pencil | |
dc.subject.keyword | Asymptotically holomorphic | |
dc.subject.ucm | Geometría | |
dc.subject.unesco | 1204 Geometría | |
dc.title | Generic behavior of asymptotically holomorphic Lefschetz pencils. | |
dc.type | journal article | |
dc.volume.number | 2 | |
dcterms.references | V.I. Arnold, A. Varchenko and S. Goussein-Zade,Singularit´es des applications differ-entiables, Mir,1986. M. Audin, F. Lalonde and L. Polterovich, Symplectic igidity: Lagrangian submani-folds, in ‘Holomorphic curves in symplectic geometry’ (M. Audin, J. Lafontaine, eds.),PM, 117, Birkhauser, 1994. D. Auroux, Asymptotically holomorphic families of symplectic submanifolds, Geom.Funct. Anal. 7 (1997), 971–995. Symplectic 4-manifolds as branched coverings of CP2,Invent. Math. 139 (2000), 551–602. D. Auroux and L. Katzarkov, Branched coverings of CP2 and invariants of symplectic 4-manifolds, Invent. Math. 142 (2000), 631–673. D. Auroux, S. Donaldson, L. Katzarkov and M. Yotov,Fundamental groups of com-plements of plane curves and symplectic invariants, math.GT/0203183. D. Auroux, V. Muñoz and F. Presas, Lagrangian submanifolds and Lefschetz pencils,math.SG/0407126. V. Braungardt and D. Kotschick, Clustering of critical points in Lefschetz fibrations and the symplectic Szpiro inequality, math.SG/0204153. S.K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differen-tial Geom. 44 (1996), 666–705. Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999),205–236. M. Goresky and R. MacPherson, Stratified Morse theory,Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 14, Springer-Verlag, Berlin, 1988. A. Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980), 89–104. D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Math. Mono-graphs, 2nd ed., 1998. V. Muñoz, F. Presas and I. Sols, Almost holomorphic embeddings in grassmanians with applications to singular symplectic submanifolds, J. Reine Angew. Math. 547 (2002), 149–189. L. Polterovich, The geometry of the group of symplectic diffeomorphisms, Birkhauser,Lectures is Mathematics, Basel, 2001. I. Smith, Lefschetz pencils and divisors in moduli space, Geom. and Topology 5 (2001),579–608. I. Smith, R.P. Thomas and S.-T. Yau, Symplectic conifold transitions, J. Differential Geom. 62 (2002), 209–242. Seminaire de Geometrie Algebrique 7-2, Lecture Notes Math., 340, Springer-Verlag. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1