Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Generic behavior of asymptotically holomorphic Lefschetz pencils.

dc.contributor.authorAmorós, Jaume
dc.contributor.authorMuñoz, Vicente
dc.contributor.authorPresas, Francisco
dc.date.accessioned2023-06-20T10:34:40Z
dc.date.available2023-06-20T10:34:40Z
dc.date.issued2004
dc.description.abstractWe prove that the vanishing spheres of the Lefschetz pen- cils constructed by Donaldson on symplectic manifolds of any dimension are conjugated under the action of the symplec- tomorphism group of the fiber. More precisely, a number of generalized Dehn twists may be used to conjugate those spheres. This implies the non-existence of homologically triv-ial vanishing spheres in these pencils. To develop the proof,we discuss some basic topological properties of the space of asymptotically holomorphic transverse sections.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.sponsorshipResearch Training Network
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21175
dc.identifier.issn1527-5256
dc.identifier.officialurlhttp://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.jsg/1118755326
dc.identifier.relatedurlhttp://projecteuclid.org
dc.identifier.relatedurlhttp://arxiv.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50618
dc.issue.number3
dc.journal.titleThe Journal of Symplectic Geometry
dc.language.isoeng
dc.page.final392
dc.page.initial377
dc.publisherInternational Press
dc.relation.projectIDBFM2003–06001
dc.relation.projectIDBFM2000–0024.
dc.relation.projectIDBFM2000–0024
dc.relation.projectIDHPRN-CT-2000-00101.
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.keywordSymplectic
dc.subject.keywordLefschetz pencil
dc.subject.keywordAsymptotically holomorphic
dc.subject.ucmGeometría
dc.subject.unesco1204 Geometría
dc.titleGeneric behavior of asymptotically holomorphic Lefschetz pencils.
dc.typejournal article
dc.volume.number2
dcterms.referencesV.I. Arnold, A. Varchenko and S. Goussein-Zade,Singularit´es des applications differ-entiables, Mir,1986. M. Audin, F. Lalonde and L. Polterovich, Symplectic igidity: Lagrangian submani-folds, in ‘Holomorphic curves in symplectic geometry’ (M. Audin, J. Lafontaine, eds.),PM, 117, Birkhauser, 1994. D. Auroux, Asymptotically holomorphic families of symplectic submanifolds, Geom.Funct. Anal. 7 (1997), 971–995. Symplectic 4-manifolds as branched coverings of CP2,Invent. Math. 139 (2000), 551–602. D. Auroux and L. Katzarkov, Branched coverings of CP2 and invariants of symplectic 4-manifolds, Invent. Math. 142 (2000), 631–673. D. Auroux, S. Donaldson, L. Katzarkov and M. Yotov,Fundamental groups of com-plements of plane curves and symplectic invariants, math.GT/0203183. D. Auroux, V. Muñoz and F. Presas, Lagrangian submanifolds and Lefschetz pencils,math.SG/0407126. V. Braungardt and D. Kotschick, Clustering of critical points in Lefschetz fibrations and the symplectic Szpiro inequality, math.SG/0204153. S.K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differen-tial Geom. 44 (1996), 666–705. Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999),205–236. M. Goresky and R. MacPherson, Stratified Morse theory,Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 14, Springer-Verlag, Berlin, 1988. A. Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980), 89–104. D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Math. Mono-graphs, 2nd ed., 1998. V. Muñoz, F. Presas and I. Sols, Almost holomorphic embeddings in grassmanians with applications to singular symplectic submanifolds, J. Reine Angew. Math. 547 (2002), 149–189. L. Polterovich, The geometry of the group of symplectic diffeomorphisms, Birkhauser,Lectures is Mathematics, Basel, 2001. I. Smith, Lefschetz pencils and divisors in moduli space, Geom. and Topology 5 (2001),579–608. I. Smith, R.P. Thomas and S.-T. Yau, Symplectic conifold transitions, J. Differential Geom. 62 (2002), 209–242. Seminaire de Geometrie Algebrique 7-2, Lecture Notes Math., 340, Springer-Verlag.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz49.pdf
Size:
204.17 KB
Format:
Adobe Portable Document Format

Collections