Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On measuring features importance in Machine Learning models in a two-dimensional representation scenario

dc.conference.date18-23 jul 2022
dc.conference.placePadua, Italia
dc.conference.title2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
dc.contributor.authorGutiérrez García-Pardo, Inmaculada
dc.contributor.authorSantos, Daniel
dc.contributor.authorCastro Cantalejo, Javier
dc.contributor.authorGómez González, Daniel
dc.contributor.authorEspínola Vílchez, María Rosario
dc.contributor.authorGuevara Gil, Juan Antonio
dc.date.accessioned2024-05-24T15:08:33Z
dc.date.available2024-05-24T15:08:33Z
dc.date.issued2022
dc.description.abstractAbstract: There is a wide range of papers in the literature about the explanation of machine learning models in which Shapley value is considered to measure the importance of the features in these models. We can distinguish between these which set their basis on the cooperative game theory principles, and these focused on fuzzy measures. It is important to mention that all of these approaches only provide a crisp value (or a fix point) to measure the importance of a feature in a specific model. The reason is that an aggregation process of the different marginal contributions produces a single output for each variable. Nevertheless, and because of the relations between features, we cannot distinguish the case in which we do not know all the features. To this aim, we propose a disaggregated model which allows the analysis of the importance of the features, regarding the available information. This new proposal can be viewed as a generalization of all previous measures found in literature providing a two dimensional graph which, in a very intuitive and visual way, provides this rich disaggregated information. This information may be aggregated with several aggregation functions with which obtain new measures to establish the importance of the features. Specifically, the aggregation by the sum results in the Shapley value. We also explain the characteristics of those graphics in different scenarios of the relations among features, to raise this useful information at a glance.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationGutiérrez García-Pardo, I. et al. (2022) «On measuring features importance in Machine Learning models in a two-dimensional representation scenario», en IEEE International Conference on Fuzzy Systems. Institute of Electrical and Electronics Engineers Inc. Disponible en: https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882566.
dc.identifier.doi10.1109/FUZZ-IEEE55066.2022.9882566
dc.identifier.essn1558-4739
dc.identifier.isbn978-1-6654-6710-0
dc.identifier.isbn978-1-6654-6711-7
dc.identifier.issn1544-5615
dc.identifier.officialurlhttps://doi.org/10.1109/FUZZ-IEEE55066.2022.9882566
dc.identifier.relatedurlhttps://ieeexplore.ieee.org/document/9882566
dc.identifier.urihttps://hdl.handle.net/20.500.14352/104418
dc.language.isoeng
dc.page.final9
dc.page.initial1
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu004.85
dc.subject.cdu519.2
dc.subject.cdu519.83
dc.subject.keywordVisualization
dc.subject.keywordAnalytical models
dc.subject.keywordMachine learning
dc.subject.keywordProposals
dc.subject.keywordGame theory
dc.subject.keywordFuzzy systems
dc.subject.ucmEstadística
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmTeoría de Juegos
dc.subject.unesco1209 Estadística
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1207.06 Teoría de Juegos
dc.titleOn measuring features importance in Machine Learning models in a two-dimensional representation scenario
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication2f4cd183-2dd2-4b4e-8561-9086ff5c0b90
relation.isAuthorOfPublicatione556dae6-6552-4157-b98a-904f3f7c9101
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication843bc5ed-b523-401d-98ed-6cb00a801c31
relation.isAuthorOfPublication.latestForDiscovery2f4cd183-2dd2-4b4e-8561-9086ff5c0b90

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On_measuring_features_importance_in_Machine.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format