Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Postprocessing of edge detection algorithms with machine learning techniques

dc.contributor.authorFlores Vidal, Pablo Arcadio
dc.contributor.authorCastro Cantalejo, Javier
dc.contributor.authorGómez González, Daniel
dc.contributor.editorHemanth, Jude
dc.date.accessioned2024-11-11T10:05:37Z
dc.date.available2024-11-11T10:05:37Z
dc.date.issued2022-03-23
dc.description.abstractIn this paper, machine learning (ML) techniques are applied at an early stage of Image Processing (IP). The learning procedures are usually applied from at least the image segmentation level, whereas, in this paper, this is done from a lower processing level: the edge detection level (ED). The main objective is to solve the edge detection problem through ML techniques. The proposed methodology is based on a classification of edges made pixel by pixel, but the predictors employed for the ML task include information about the pixel neighborhood and structures of connected pixels called edge segments. The Sobel operator is employed as input. Making use of 50 images that belong to the Berkeley Computer Vision data set, the average performance of the validation sets when employing our Neural Networks method reached an F-measure significatively higher than with the Sobel operator. The experiment results show that our post-processing technique is a promising new approach for ED.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.statuspub
dc.identifier.citationFlores-Vidal, P., Castro, J. y Gómez, D. (2022) «Postprocessing of Edge Detection Algorithms with Machine Learning Techniques», Mathematical Problems in Engineering, 2022. Disponible en: https://doi.org/10.1155/2022/9729343.
dc.identifier.essn1563-5147
dc.identifier.issn1024-123X
dc.identifier.officialurlhttps://doi.org/10.1155/2022/9729343
dc.identifier.relatedurlhttps://onlinelibrary.wiley.com/journal/2629
dc.identifier.urihttps://hdl.handle.net/20.500.14352/110385
dc.journal.titleMathematical Problems in Engineering
dc.language.isoeng
dc.page.final12
dc.page.initial1
dc.publisherHindawi Limited
dc.relation.projectIDPGC2018-096509-BI00
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu510.5
dc.subject.cdu519.712
dc.subject.cdu007
dc.subject.cdu004.8
dc.subject.cdu004.6
dc.subject.keywordClassification (of information)
dc.subject.keywordEdge detection
dc.subject.keywordImage segmentation
dc.subject.keywordLearning algorithms
dc.subject.keywordMachine learning
dc.subject.keywordSignal detection
dc.subject.ucmEstadística
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmGestión de la información
dc.subject.ucmTécnicas de la imagen
dc.subject.unesco1206.01 Construcción de Algoritmos
dc.subject.unesco1209 Estadística
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1209.03 Análisis de Datos
dc.subject.unesco2209.90 Tratamiento Digital. Imágenes
dc.titlePostprocessing of edge detection algorithms with machine learning techniques
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number2022
dspace.entity.typePublication
relation.isAuthorOfPublication881ba82f-e783-4e7e-a1b6-dded36681497
relation.isAuthorOfPublicatione556dae6-6552-4157-b98a-904f3f7c9101
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication.latestForDiscovery881ba82f-e783-4e7e-a1b6-dded36681497

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mathematical Problems in Engineering - 2022 - Flores-Vidal - Postprocessing of Edge Detection Algorithms with Machine.pdf
Size:
4.17 MB
Format:
Adobe Portable Document Format

Collections