Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Application of principal component analysis in phase-shifting photoelasticity

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorGómez Pedrero, José Antonio
dc.date.accessioned2023-06-15T07:49:06Z
dc.date.available2023-06-15T07:49:06Z
dc.date.issued2016-03-21
dc.descriptionEn Open Access en la web del editor Received 30 Nov 2015; revised 11 Feb 2016; accepted 15 Feb 2016; published 9 Mar 2016. © 2016 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
dc.description.abstractPrincipal component analysis phase shifting (PCA) is a useful tool for fringe pattern demodulation in phase shifting interferometry. The PCA has no restrictions on background intensity or fringe modulation, and it is a self-calibrating phase sampling algorithm (PSA). Moreover, the technique is well suited for analyzing arbitrary sets of phase-shifted interferograms due to its low computational cost. In this work, we have adapted the standard phase shifting algorithm based on the PCA to the particular case of photoelastic fringe patterns. Compared with conventional PSAs used in photoelasticity, the PCA method does not need calibrated phase steps and, given that it can deal with an arbitrary number of images, it presents good noise rejection properties, even for complicated cases such as low order isochromatic photoelastic patterns. © 2016 Optical Society of America.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipMINECO (Ministerio Español de Economía y Competitividad)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37785
dc.identifier.doi10.1364/OE.24.005984
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://0-dx.doi.org.cisne.sim.ucm.es/10.1364/OE.24.005984
dc.identifier.relatedurlhttps://0-www.osapublishing.org.cisne.sim.ucm.es/oe/fulltext.cfm?uri=oe-24-6-5984&id=337117
dc.identifier.urihttps://hdl.handle.net/20.500.14352/197
dc.issue.number6
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final5995
dc.page.initial5984
dc.publisherThe Optical Society Of America
dc.relation.projectIDDPI2012-36103
dc.rights.accessRightsopen access
dc.subject.cdu535.41
dc.subject.keywordPhase measurement
dc.subject.keywordPolarimetry
dc.subject.keywordFringe analysis
dc.subject.keywordNondestructive testing. Instrumentation
dc.subject.keywordMeasurement
dc.subject.keywordand Metrology
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleApplication of principal component analysis in phase-shifting photoelasticity
dc.typejournal article
dc.volume.number24
dcterms.references1. K. Ramesh, Digital Photoelasticity: Advanced Techniques and Applications, Volume 1, (Springer-Verlag, 2000). Available at: https://books.google.com/books/about/Digital_Photoelasticity.html?id=f8hRAAAAMAAJ&pgis=1 [Accessed August 12, 2015]. 2. M. Servín, J. A. Quiroga, and M. Padilla, Fringe Pattern Analysis for Optical Metrology: Theory, Algorithms, and Applications, (Wiley, 2014). 3. K. Ramesh, T. Kasimayan, and B. Neethi Simon, “Digital photoelasticiy - a comprehensive review,” J. Strain Analysis 46(4), 245–266 (2011). 4. J. A. Quiroga and A. González-Cano, “Phase measuring algorithm for extraction of isochromatics of photoelastic fringe patterns,” Appl. Opt. 36(32), 8397–8402 (1997). 5. M. Servin, J. C. Estrada, and J. A. Quiroga, “The general theory of phase shifting algorithms,” Opt. Express 17(24), 21867–21881 (2009). 6. J. C. Estrada, M. Servin, and J. A. Quiroga, “Easy and straightforward construction of wideband phase-shifting algorithms for interferometry,” Opt. Lett. 34(4), 413–415 (2009). 7. J. C. Estrada, M. Servin, and J. A. Quiroga, “A self-tuning phase-shifting algorithm for interferometry,” Opt. Express 18(3), 2632–2638 (2010). 8. P. Carré, “Installation et utilisation du comparateur photoelectrique et interferentiel du Bureau International des Poids et Mesures,” Metrologia 2(1), 13–23 (1966). 9. J. Vargas, J. A. Quiroga, and T. Belenguer, “Phase-shifting interferometry based on principal component analysis,” Opt. Lett. 36(8), 1326–1328 (2011). 10. J. Vargas, J. A. Quiroga, and T. Belenguer, “Analysis of the principal component algorithm in phase-shifting interferometry,” Opt. Lett. 36(12), 2215–2217 (2011). 11. J. Vargas, C. O. S. Sorzano, J. C. Estrada, and J. M. Carazo, “Generalization of the Principal Component Analysis algorithm for interferometry,” Opt. Commun. 286, 130–134 (2013). 12. J. Xu, W. Jin, L. Chai, and Q. Xu, “Phase extraction from randomly phase-shifted interferograms by combining principal component analysis and least squares method,” Opt. Express 19(21), 20483–20492 (2011). 13. J. Vargas, J. M. Carazo, and C. O. S. Sorzano, “Error analysis of the principal component analysis demodulation algorithm,” Appl. Phys. B 115(3), 355–364 (2014). 14. J. A. Quiroga and A. González-Cano, “Separation of isoclinics and isochromatics from photoelastic data with a regularized phase-tracking technique,” Appl. Opt. 39(17), 2931–2940 (2000). 15. J. A. Quiroga, E. Pascual, and J. Villa-Hernández, “Robust isoclinic calculation for automatic analysis of photoelastic fringe patterns,” Proc. SPIE 7155, 715530 (2008).
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication5c5cb6be-771c-40ed-8af0-cdfdbdfb3d36
relation.isAuthorOfPublication.latestForDiscovery5c5cb6be-771c-40ed-8af0-cdfdbdfb3d36

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Application of principal-OSA optics express 2016-postprint.pdf
Size:
551.74 KB
Format:
Adobe Portable Document Format

Collections