Nanostructured gold electrodes promote neural maturation and network connectivity

dc.contributor.authorDominguez-Bajo, Ana
dc.contributor.authorRosa, Juliana M.
dc.contributor.authorGonzález-Mayorga, Ankor
dc.contributor.authorRodilla González, Beatriz Loreto
dc.contributor.authorArché-Nuñez, Ana
dc.contributor.authorBenayas, Esther
dc.contributor.authorOcón, Pilar
dc.contributor.authorPérez García, Lucas
dc.contributor.authorCamarero, Julio
dc.contributor.authorMiranda, Rodolfo
dc.contributor.authorGonzález, M. Teresa
dc.contributor.authorAguilar, Juan
dc.contributor.authorLopez-Dolado, Elisa
dc.contributor.authorSerrano, María C.
dc.date.accessioned2024-02-06T11:51:54Z
dc.date.available2024-02-06T11:51:54Z
dc.date.issued2021-10-15
dc.description.abstractProgress in the clinical application of recording and stimulation devices for neural diseases is still limited, mainly because of suboptimal material engineering and unfavorable interactions with biological entities. Nanotechnology is providing upgraded designs of materials to better mimic the native extracellular environment and attain more intimate contacts with individual neurons, besides allowing for the miniaturization of the electrodes. However, little progress has been done to date on the understanding of the biological impact that such neural interfaces have on neural network maturation and functionality. In this work, we elucidate the effect of a gold (Au) highly ordered nanostructure on the morphological and functional interactions with neural cells and tissues. Alumina-templated Au nanostructured electrodes composed of parallel nanowires of 160 nm in diameter and 1.2 mu m in length (Au-NWs), with 320 nm of pitch, are designed and characterized. Equivalent non-structured Au electrodes (Au-Flat) are used for comparison. By using diverse techniques in in vitro cell cultures including live calcium imaging, we found that Au-NWs interfaced with primary neural cortical cells for up to 14 days allow neural networks growth and increase spontaneous activity and ability of neuronal synchronization, thus indicating that nanostructured features favor neuronal network. The enhancement in the number of glial cells found is hypothesized to be behind these beneficial functional effects. The in vivo effect of the implantation of these nanostructured electrodes and its potential relevance for future clinical applicability has been explored in an experimental model of rat spinal cord injury. Subacute responses to implanted Au-NWs show no overt reactive or toxic biological reactions besides those triggered by the injury itself. These results highlight the translational potential of Au-NWs electrodes for in vivo applications as neural interfaces in contact with central nervous tissues including the injured spinal cord.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnion Europea (Programa FP 7)
dc.description.sponsorshipMarie Sklodowska-Curie grant
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipProject BiSURE
dc.description.sponsorship'Severo Ochoa’ Programme for Centres of Excellence
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationAna Domínguez-Bajo, Juliana M. Rosa, Ankor González-Mayorga, Beatriz L. Rodilla, Ana Arché-Núñez, Esther Benayas, Pilar Ocón, Lucas Pérez, Julio Camarero, Rodolfo Miranda, M. Teresa González, Juan Aguilar, Elisa López-Dolado, María C. Serrano, Nanostructured gold electrodes promote neural maturation and network connectivity, Biomaterials 279 (2021) 121186
dc.identifier.doi10.1016/j.biomaterials.2021.121186
dc.identifier.issn0142-9612
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S0142961221005433
dc.identifier.urihttps://hdl.handle.net/20.500.14352/99427
dc.journal.titleBiomaterials
dc.language.isoeng
dc.page.initial121186
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/737116/EU
dc.relation.projectIDRYC2019-026870-I
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-90058-R/ES/SUPERFICIES NANOESTRUCTURADAS BIOFUNCIONALES COMO NUEVA GENERACION DE IMPLANTES EN MEDICINA REGENERATIVA/
dc.relation.projectIDSEV-2016-0686
dc.relation.projectIDCM S2018/NMT-4321
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/794926/EU
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu53
dc.subject.cdu577.3
dc.subject.keywordGold
dc.subject.keywordLive calcium dynamics
dc.subject.keywordNanostructured electrodes
dc.subject.keywordNanowires
dc.subject.keywordNetwork connectivity
dc.subject.keywordSpinal cord injury
dc.subject.ucmFísica (Física)
dc.subject.ucmBiología
dc.subject.unesco2490 Neurociencias
dc.subject.unesco3312 Tecnología de Materiales
dc.titleNanostructured gold electrodes promote neural maturation and network connectivity
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number279
dspace.entity.typePublication
relation.isAuthorOfPublication2b35287b-53b7-435f-9189-c0c4bf0bd98f
relation.isAuthorOfPublication01b88344-8278-4947-9475-d5b2a652b9d7
relation.isAuthorOfPublication.latestForDiscovery2b35287b-53b7-435f-9189-c0c4bf0bd98f
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Biomaterials_ByAxon.pdf
Size:
10.14 MB
Format:
Adobe Portable Document Format
Collections