Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Time periodic solutions for a diffusive energy balance model in climatology

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorBadii, M
dc.date.accessioned2023-06-20T16:53:56Z
dc.date.available2023-06-20T16:53:56Z
dc.date.issued1999-05-15
dc.description.abstractWe prove the existence of a periodic solution to the problem u(t) - Delta(p)u + R-e(x,u) is an element of mu Q(x,t)beta(u) in M x R, assumed p greater than or equal to 2, M a compact connected and oriented bidimensional Riemannian manifold without boundary, beta(u) a bounded maximal monotone graph (the coalbedo), Q(x, t) a time periodic function (the incoming solar radiation flux) and R-e a time independent strictly increasing function of the surface temperature u (the Earth emitted energy)
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain
dc.description.sponsorshipG.N.A.F.A.-C.N.R. M.U.R.S.T
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15647
dc.identifier.doi10.1006/jmaa.1999.6335
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X99963357
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57369
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and applications
dc.language.isoeng
dc.page.final729
dc.page.initial713
dc.publisherAcademic Press
dc.relation.projectIDPB96-0583.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.956.4
dc.subject.keywordnonlinear parabolic equations
dc.subject.keywordperiodic solutions
dc.subject.keywordsupersolution
dc.subject.keywordsubsolution
dc.subject.keywordRiemannian manifold
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleTime periodic solutions for a diffusive energy balance model in climatology
dc.typejournal article
dc.volume.number233
dcterms.referencesD. Arcoya, J. L. Díaz, and L. Tello, ‘‘S-shaped bifurcation branch in a model arising in climatology,’’ J. Differential Equations, 150 ,1998., 215-225. T. Aubin, ‘‘Nonlinear Analysis on Manifold. Monge-Ampere Equations,’’ Springer-Verlag, Berlin, New York, 1982. V. Barbu, ‘‘Nonlinear Semigroups and Differential Equations in Banach Spaces,’’ Noordhooff International Publishing, 1976. Ph. Benilan, Operateurs accr´etifs et semi-groupes dans les espaces L p _1FpF`., in ‘‘Functional Analysis and Numerical Analysis,’’ ,H. Fujita, ed.. Japan Society for the Promotion of Sciences, Tokyo, pp. 15-53, 1978. H. Brezis, ‘‘Operateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert,’’ North Holland, Amsterdam, 1973. M. I. Budyko, The effect of solar radiation variations on the climate of the Earth, Tellus, 21 ,1969., 611-619. E. Di Benedetto, ‘‘Degenerate Parabolic Equations,’’ Springer-Verlag, Berlin, New York, 1993. J. I. Díaz, ‘‘Nonlinear partial differential equations and free boundaries,’’ Pitman, London, 1985. J. I. Díaz, Mathematical analysis of some diffusive energy balance models in climatology, in Mathematics, Climate and Environment, J. I. Díaz and J. L. Lions, Eds.. pp. 28-56, Masson, Paris, 1993. J. I. Díaz, J. Hernández, and L. Tello, On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology, J. Math. Anal. Appl. 216, 1998., 593-613. J. I. Díaz and M. A. Herrero, Estimates of the support of the solutions of some nonlinear elliptic and parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 89A,1981., 249-258. J. I. Díaz and L. Tello, A Nonlinear Parabolic Problem on a Riemannian Manifold Without Boundary Arising in Climatology, to appear in Collect. Math., G. Hetzer, Forced periodic oscillations in the climate system via an energy balance model, Comment. Math. Uni¨. Carolin. 28 ,1987., 593-401. G. Hetzer, A parameter dependent time-periodic reaction-diffusion equation from climate modeling; S-shapedness of the principal branch of fixed points of the time 1-map, Differential Integral Equations, 7 ,1994., 1419-1425. C. V. Pao, ‘‘Nonlinear Parabolic and Elliptic Equations,’’ Plenum, New York, 1992. P. H. Rabinowitz, Some global results for nonlinear eigenvalue problem, J. Funct. Anal.,7 ,1971., 487-513. W. P. Sellers, A global climate model based on the energy balance of the Earth-atmo-sphere system, J. Appl. Meteorol., 8,1969., 392-400. J. Simon, Compact sets in the space L p_0, T; B., Ann. Mat. Pura Appl. 146 ,1987., 65-96. P. H. Stone, A simplified radiative-dynamical model for the static stability of rotating atmospheres, J. Atmospheric Sci. 29 ,1972., 405-418. L. Tello, Tratamiento matematico de algunos modelos no lineales en Climatologia,Thesis, Universidad Complutense de Madrid, June 1996. I. I. Vrabie, ‘‘Compactness Methods for Nonlinear Evolutions,’’ Pitman-Longman, London, 1987. G. T. Whyburn, ‘‘Topological Analysis,’’ Princeton Univ. Press, Princeton, 1955.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
78.pdf
Size:
123.17 KB
Format:
Adobe Portable Document Format

Collections