On Cantor sets in 3-manifolds and branched coverings
dc.contributor.author | Montesinos Amilibia, José María | |
dc.date.accessioned | 2023-06-20T10:36:30Z | |
dc.date.available | 2023-06-20T10:36:30Z | |
dc.date.issued | 2003-06 | |
dc.description.abstract | In 1969 R. P. Osborne [Fund. Math. 65 (1969), 147–151;] proved that any Cantor set in an n-manifold (open or closed) is tamely embedded in the boundary of a k-cell, for every 2≤k≤n. In the present work the author generalizes Osborne's result in the particular case where the manifold has dimension 3. Namely, he proves the following: Theorem 2. Let C be a Cantor set in an orientable 3-manifold M (open or closed). Then there exist a (possibly empty) 0-dimensional subset R of S3, a k-cell Δk⊂M (k=2,3), and a 3-fold covering p:M→S3−R, branched over a locally finite disjoint union of strings, such that (i) C is tamely embedded in the boundary of Δk, (ii) p|Δk is a homeomorphism onto its image, (iii) p(Δk) is a tamely embedded k-cell in S3−R, and (iv) p(C) is a tame Cantor set T in S3−R tamely embedded in the boundary of p(Δk). The proof is based on previous work of the author on branching coverings of 3-manifolds. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22289 | |
dc.identifier.doi | 10.1093/qmath/hag007 | |
dc.identifier.issn | 0033-5606 | |
dc.identifier.officialurl | http://0-qjmath.oxfordjournals.org.cisne.sim.ucm.es/content/54/2.toc | |
dc.identifier.relatedurl | http://qjmath.oxfordjournals.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50752 | |
dc.issue.number | 2 | |
dc.journal.title | Quarterly Journal of Mathematics | |
dc.page.final | 212 | |
dc.page.initial | 209 | |
dc.publisher | Oxford University Press | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | 3-manifolds | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | On Cantor sets in 3-manifolds and branched coverings | |
dc.type | journal article | |
dc.volume.number | 54 | |
dcterms.references | I. Berstein and A. L. Edmonds, The degree and branch set of a branched covering, Invent. Math. 45 (1978), 213–220. A. L. Edmonds, Branched coverings and orbit maps, Michigan Math. J. 23 (1976), 289–301 (1977). R. H. Fox, Covering Spaces with Singularities, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, 1957, 243–257. H. Freudenthal, Über die Enden diskreter Räume und Gruppen, Comment. Math. Helv. 17 (1945), 1–38. P. H. Doyle and J. G. Hocking, Dimensional invertibility. Pacific J. Math. 12 (1962), 1235–1240. N. G. Lloyd, Degree Theory, Cambridge Tracts in Mathematics 73, Cambridge University Press, Cambridge, 1978. J. M. Montesinos-Amilibia, Representing open 3-manifolds as 3-fold branched coverings, Rev. Mat. Univ. Complut. Madrid 15 (2002), 533–542. R. P. Osborne, Embedding Cantor sets in a manifold. II. An extension theorem for homeomorphisms on Cantor sets, Fund. Math. 65 (1969), 147–151. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |