Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Cantor sets in 3-manifolds and branched coverings

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T10:36:30Z
dc.date.available2023-06-20T10:36:30Z
dc.date.issued2003-06
dc.description.abstractIn 1969 R. P. Osborne [Fund. Math. 65 (1969), 147–151;] proved that any Cantor set in an n-manifold (open or closed) is tamely embedded in the boundary of a k-cell, for every 2≤k≤n. In the present work the author generalizes Osborne's result in the particular case where the manifold has dimension 3. Namely, he proves the following: Theorem 2. Let C be a Cantor set in an orientable 3-manifold M (open or closed). Then there exist a (possibly empty) 0-dimensional subset R of S3, a k-cell Δk⊂M (k=2,3), and a 3-fold covering p:M→S3−R, branched over a locally finite disjoint union of strings, such that (i) C is tamely embedded in the boundary of Δk, (ii) p|Δk is a homeomorphism onto its image, (iii) p(Δk) is a tamely embedded k-cell in S3−R, and (iv) p(C) is a tame Cantor set T in S3−R tamely embedded in the boundary of p(Δk). The proof is based on previous work of the author on branching coverings of 3-manifolds.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22289
dc.identifier.doi10.1093/qmath/hag007
dc.identifier.issn0033-5606
dc.identifier.officialurlhttp://0-qjmath.oxfordjournals.org.cisne.sim.ucm.es/content/54/2.toc
dc.identifier.relatedurlhttp://qjmath.oxfordjournals.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50752
dc.issue.number2
dc.journal.titleQuarterly Journal of Mathematics
dc.page.final212
dc.page.initial209
dc.publisherOxford University Press
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.1
dc.subject.keyword3-manifolds
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn Cantor sets in 3-manifolds and branched coverings
dc.typejournal article
dc.volume.number54
dcterms.referencesI. Berstein and A. L. Edmonds, The degree and branch set of a branched covering, Invent. Math. 45 (1978), 213–220. A. L. Edmonds, Branched coverings and orbit maps, Michigan Math. J. 23 (1976), 289–301 (1977). R. H. Fox, Covering Spaces with Singularities, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, 1957, 243–257. H. Freudenthal, Über die Enden diskreter Räume und Gruppen, Comment. Math. Helv. 17 (1945), 1–38. P. H. Doyle and J. G. Hocking, Dimensional invertibility. Pacific J. Math. 12 (1962), 1235–1240. N. G. Lloyd, Degree Theory, Cambridge Tracts in Mathematics 73, Cambridge University Press, Cambridge, 1978. J. M. Montesinos-Amilibia, Representing open 3-manifolds as 3-fold branched coverings, Rev. Mat. Univ. Complut. Madrid 15 (2002), 533–542. R. P. Osborne, Embedding Cantor sets in a manifold. II. An extension theorem for homeomorphisms on Cantor sets, Fund. Math. 65 (1969), 147–151.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Collections