Análisis no estándar
Loading...
Official URL
Full text at PDC
Publication date
2024
Defense date
10/07/2024
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
El Análisis no estándar es el Análisis matemático estándar con infinitésimos. El cuerpo ordenado estándar cuyos elementos son los números reales (la recta real) se extiende a cuerpos ordenados no arquimedianos que tienen infinitésimos y elementos infinitos y son elementalmente equivalentes al cuerpo estándar (las rectas hiperreales). Los elementos de estas extensiones se denominan números hiperreales. Los métodos de obtención de las extensiones son de Lógica matemática, principalmente de la teoría de modelos de la lógica de primer orden. Un primer ejemplo de extensión se obtiene como una aplicación directa del teorema de compacidad de la lógica de primer orden. Mucho más útil es la extensión obtenida como una ultrapotencia del cuerpo ordenado de los números reales. Con esta ultrapotencia y el esencial principio de transferencia se definen las nociones fundamentales del Análisis de variable real (sucesiones, límites y continuidad de funciones, derivadas, integración y conceptos topológicos de la recta real) y se demuestran sus propiedades usando Análisis no estándar.
Nonstandard analysis is mathematical analysis with infinitesimals. The standard ordered field whose elements are the real numbers (the real line) is extended to non-Archimedian ordered fields that have infinitesimals and infinite elements and are elementarily equivalent to the standard field (the hyperreal lines). The elements of these extensions are called hyperreal numbers. The methods of obtaining these extensions come from mathematical logic, mainly from the model theory of first-order logic. A first extension is obtained as a direct application of the compactness theorem of first-order logic. Much more useful is the extension obtained as an ultrapower of the ordered field of real numbers. Using this ultrapower and the key transfer principle, we define the basic notions of single-variable calculus (sequences, limits and continuity of functions, differential and integral calculus, and topological concepts of the real line) and prove their properties using nonstandard analysis.
Nonstandard analysis is mathematical analysis with infinitesimals. The standard ordered field whose elements are the real numbers (the real line) is extended to non-Archimedian ordered fields that have infinitesimals and infinite elements and are elementarily equivalent to the standard field (the hyperreal lines). The elements of these extensions are called hyperreal numbers. The methods of obtaining these extensions come from mathematical logic, mainly from the model theory of first-order logic. A first extension is obtained as a direct application of the compactness theorem of first-order logic. Much more useful is the extension obtained as an ultrapower of the ordered field of real numbers. Using this ultrapower and the key transfer principle, we define the basic notions of single-variable calculus (sequences, limits and continuity of functions, differential and integral calculus, and topological concepts of the real line) and prove their properties using nonstandard analysis.









