Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uncommon dislocation processes at the incipient plasticity of stepped gold surfaces

dc.contributor.authorNavarro, V.
dc.contributor.authorRodríguez De La Fuente, Óscar
dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.contributor.authorRojo Alaminos, Juan Manuel
dc.date.accessioned2023-06-20T10:50:04Z
dc.date.available2023-06-20T10:50:04Z
dc.date.issued2008-03-14
dc.description© 2008 The American Physical Society. The authors thank J.E. Ortega for providing us the Au(788) sample. Financial support from the Spanish MEC, Project No. MAT2006-13149-C02-01 and from the CAM Projects Nos. CAM-S-0505/PPQ/0316 and GR/ MAT/0632/2004 are gratefully acknowledged. V. N. thanks MEC through No. MAT2003-08627-C02-01.
dc.description.abstractGold vicinal surfaces (788), with a high density of steps, along with (111) flat surfaces taken as a reference, have been nanoindented and their resulting penetration curves and related defect structure comparatively analyzed by AFM and atomistic simulations. Stepped surfaces are shown to yield at smaller loads than (111) ones in agreement with calculations of the critical resolved shear stress needed to nucleate a dislocation. In the stepped surfaces, a novel intermediate state is identified in which the penetration curves depart from a Hertzian behavior prior to the appearance of pop-ins. This state is shown to result from heterogeneous nucleation at preexisting surface steps of dislocation loops, most of which retract and vanish when the indenter load is removed.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MEC
dc.description.sponsorshipCAM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28334
dc.identifier.doi10.1103/PhysRevLett.100.105504
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.100.105504
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51307
dc.issue.number10
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT2006-13149-C02-01
dc.relation.projectIDCAM-S-0505/PPQ/0316
dc.relation.projectIDGR/ MAT/0632/2004
dc.relation.projectIDMAT2003-08627-C02-01.
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordDefect nucleation
dc.subject.keywordNanoindentation
dc.subject.keywordSimulation
dc.subject.ucmFísica de materiales
dc.titleUncommon dislocation processes at the incipient plasticity of stepped gold surfaces
dc.typejournal article
dc.volume.number100
dcterms.references[1] J. Li et al., Nature (London) 418, 307 (2002). [2] S. G. Corcoran et al., Phys. Rev. B 55, R16057 (1997). [3] J. D. Kiely and J. E. Houston, Phys. Rev. B 57, 12588 (1998); J. D. Kiely, R. Q. Hwang, and J. E. Houston, Phys. Rev. Lett. 81, 4424 (1998). [4] A. Gouldstone, K. V. Vliet, and S. Suresh, Nature (London) 411, 656 (2001). [5] O. R. de la Fuente et al., Phys. Rev. Lett. 88, 036101 (2002). [6] C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998). [7] G. L. W. Cross et al., Nat. Mater. 5, 370 (2006). [8] C. A. Schuh, J. K. Mason, and A. C. Lund, Nat. Mater. 4, 617 (2005). [9] A. M. Minor et al., Nat. Mater. 5, 697 (2006). [10] J. Knap and M. Ortiz, Phys. Rev. Lett. 90, 226102 (2003). [11] J. A. Zimmerman et al., Phys. Rev. Lett. 87, 165507 (2001). [12] D. Shan et al., Mater. Sci. Eng. A 412, 264 (2005). [13] M. R. Shankar, Appl. Phys. Lett. 90, 171924 (2007). [14] H. H. Yu et al., J. Mech. Phys. Solids 55, 489 (2007). [15] J. Li, MRS Bull. 32, 151 (2007). [16] I. Horcas et al., Rev. Sci. Instrum. 78, 013705 (2007). [17] S. M. Foiles, Phys. Rev. B 32, 3409 (1985). [18] W. H. Press et al., Numerical Recipes in Fortran (Cambridge University Press, Cambridge, 1992). [19] J. Li, Model. Simul. Mater. Sci. Eng. 11, 173 (2003). [20] A. Asenjo et al., Phys. Rev. B 73, 075431 (2006). [21] E. Carrasco et al., Phys. Rev. B 68, 180102 (2003). [22] A. Mugarza et al., Phys. Rev. Lett. 87, 107601 (2001). [23] K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985). [24] Y. Shibutani and A. Koyama, J. Mater. Res. 19, 183 (2004). [25] Movies of these processes are available as Auxiliary Material. See EPAPS Document No. E-PRLTAO-100- 024811. For more information on EPAPS, see http:// www.aip.org/pubservs/epaps.html. [26] Except a few dislocations at the surface, with Burgers vector parallel to the surface. [27] B. Luan and M. O. Robbins, Nature (London) 435, 929 (2005).
dspace.entity.typePublication
relation.isAuthorOfPublication03516c08-0b94-473c-9082-c2fa885a827d
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication521bf075-e086-457d-9c12-387e350d5e82
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mascaraque,A 23libre.pdf
Size:
518.95 KB
Format:
Adobe Portable Document Format

Collections