Poisson–Hopf deformations of Lie–Hamilton systems revisited: deformed superposition rules and applications to the oscillator algebra

dc.contributor.authorBallesteros, Ángel
dc.contributor.authorCampoamor Stursberg, Otto-Rudwig
dc.contributor.authorFernández Saiz, Eduardo
dc.contributor.authorHerranz, Francisco J.
dc.contributor.authorLucas, Javier de
dc.date.accessioned2023-06-17T09:05:28Z
dc.date.available2023-06-17T09:05:28Z
dc.date.issued2021
dc.description.abstractThe formalism for Poisson–Hopf (PH) deformations of Lie–Hamilton systems, recently proposed in [1], is refined in one of its crucial points concerning applications, namely the obtention of effective and computationally feasible PH deformed superposition rules for prolonged PH deformations of Lie–Hamilton systems. The two new notions here proposed are a generalization of the standard superposition rules and the concept of diagonal prolongations for Lie systems, which are consistently recovered under the non-deformed limit. Using a technique from superintegrability theory, we obtain a maximal number of functionally independent constants of the motion for a generic prolonged PH deformation of a Lie–Hamilton system, from which a simplified deformed superposition rule can be derived. As an application, explicit deformed superposition rules for prolonged PH deformations of Lie–Hamilton systems based on the oscillator Lie algebra h4 are computed. Moreover, by making use that the main structural properties of the book subalgebra b2 of h4 are preserved under the PH deformation, we consider prolonged PH deformations based on b2 as restrictions of those for h4-Lie–Hamilton systems, thus allowing the study of prolonged PH deformations of the complex Bernoulli equations, for which both the constants of the motion and the deformed superposition rules are explicitly presented.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)/Fondo Europeo de Desarrollo Regional
dc.description.sponsorshipJunta de Castilla y León
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/65658
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8146
dc.language.isoeng
dc.relation.projectIDMTM2016- 79422-P; MTM2016- 79422-P; PID2019-106802GB-I00; AEI/10.13039/501100011033
dc.relation.projectIDBU229P18 and BU091G19
dc.relation.projectIDCT45/15-CT46/15
dc.rights.accessRightsopen access
dc.subject.cdu512.55
dc.subject.cdu517.9
dc.subject.keywordLie system
dc.subject.keywordConstant of the motion
dc.subject.keywordDiagonal prolongation
dc.subject.keywordSuperposition rule
dc.subject.keywordPoisson–Hopf algebra
dc.subject.keywordOscillator algebra
dc.subject.keywordBernoulli differential equations
dc.subject.ucmÁlgebra
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1201 Álgebra
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titlePoisson–Hopf deformations of Lie–Hamilton systems revisited: deformed superposition rules and applications to the oscillator algebraen
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication72801982-9f3c-4db0-b765-6e7b4aa2221b
relation.isAuthorOfPublicationd0e3e4a1-6ac1-4239-af9a-eeeef419c8a6
relation.isAuthorOfPublication.latestForDiscoveryd0e3e4a1-6ac1-4239-af9a-eeeef419c8a6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
campoamor_poisson.pdf
Size:
337.56 KB
Format:
Adobe Portable Document Format

Collections