Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

The unit ball of the complex P(H-3)

dc.contributor.authorGrecu, B.C.
dc.contributor.authorMuñoz-Fernández, Gustavo A.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T09:40:43Z
dc.date.available2023-06-20T09:40:43Z
dc.date.issued2009
dc.description.abstractLet H be a two-dimensional complex Hilbert space and P(H-3) the space of 3-homogeneous polynomials on H. We give a characterization of the extreme points of its unit ball, B-P(3H), from which we deduce that the unit sphere of P(H-3) is the disjoint union of the sets of its extreme and smooth points. We also show that an extreme point of B-P(3H) remains extreme as considered as an element of B-L(3H). Finally we make a few remarks about the geometry of the unit ball of the predual of P(H-3) and give a characterization of its smooth points.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMarie Curie Intra European Fellowship
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16965
dc.identifier.doi10.1007/s00209-008-0438-y
dc.identifier.issn0025-5874
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50167
dc.journal.titleMathematische Zeitschrift
dc.language.isoeng
dc.page.final785
dc.page.initial775
dc.publisherSpringer
dc.relation.projectIDMEIF-CT-2005-006958; MTM 2006-03531
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordUnconditional constant
dc.subject.keywordPolynomial inequalities
dc.subject.keywordTrinomials
dc.subject.keywordHomogeneous polynomials
dc.subject.keywordExtreme points
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleThe unit ball of the complex P(H-3)
dc.typejournal article
dc.volume.number263
dcterms.referencesAron, R.M., Cardwell, A., García, D., Zalduendo, I.: A multilinear Phelps’ Lemma. Proc. Am.Math. Soc. 135, 2549–2554 (2007) Aron, R.M., Hájek, P.: Zero sets of polynomials in several variables. Arch. Math. (Basel) 86(6), 561–568 (2006) Aron, R.M., Klimek, M.: Supremum norms for quadratic polynomials. Arch. Math. (Basel) 76, 73–80 (2001) Choi, Y.S., Kim, S.G., Ki, H.: Extreme polynomials and multilinear forms on l1. J. Math. Anal. Appl. 228(2), 467–482 (1998) Cobos, F., Kühn, T., Peetre, J.: Extreme points of the complex binary trilinear ball. Studia Math. 138(1), 81–92 (2000) Carando, D., Dimant, V., Sevilla-Peris, P.: Limit orders and multilinear forms on l p spaces. Publ. Res. Inst. Math. Sci. 42(2), 507–522 (2006) Dineen, S.: Complex analysis on infinite dimensional spaces. Springer Monographs in Mathematics, Springer-Verlag, London (1999) Dineen, S.: Extreme integral polynomials on a complex Banach space. Math. Scand. 92(1), 129–140 (2003) García, D., Grecu, B.C., Maestre, M.: Geometry in preduals of spaces of polynomials (2006, preprint) Grecu, B.C.: Extreme 2-homogeneous polynomials on Hilbert spaces. Quaest. Math. 25(4), 421–435 (2002) Grecu, B.C.: Geometry of three-homogeneous polynomials on real Hilbert spaces. J. Math. Anal. Appl. 246(1), 217–229 (2000) Grzaslewicz, R., John, K.: Extreme elements of the unit ball of bilinear operators on l 2 2 . Arch. Math. (Basel) 50(3), 264–269 (1988) Kim, S.G., Martin, M., Meri, J.: On the polynomial numerical index of the real spaces c0, 1 and ∞. J. Math. Anal. Appl. (2008, to appear) Konheim, A.G., Rivlin, T.J.: Extreme points of the unit ball in a space of real polynomials. Am. Math. Monthly 73, 505–507 (1966) Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B.: Geometry of Banach spaces of trinomials. J. Math. Anal. Appl. 340, 1069–1087 (2008) Neuwirth, S.: The maximum modulus of a trigonometric trinomial. arXiv:math/FA.0703236v1 Ryan,R.A.: Applications of topological tensor products to infinite dimensional holomorphy, Ph.D. Thesis, Trinity College Dublin (1980)
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Munozfernandez21.pdf
Size:
227.11 KB
Format:
Adobe Portable Document Format

Collections