Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Soft Modes, Localization, and Two-Level Systems in Spin Glasses

dc.contributor.authorBaity Jesi, Marco
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorParisi, G.
dc.contributor.authorPérez Gaviro, S.
dc.date.accessioned2023-06-18T06:49:56Z
dc.date.available2023-06-18T06:49:56Z
dc.date.issued2015-12-23
dc.description© 2015 American Physical Society (APS). We were supported by the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013, ERC Grant Agreement No. 247328). We were partially supported by MINECO, Spain, through the research contract No. FIS2012-35719-C02. This work was partially supported by the GDRE 224 CNRS-INdAM GREFI-MEFI. M. B.-J. was supported by the FPU program (Ministerio de Educación, Spain). The authors thankfully acknowledge the resources from the supercomputer “Memento,” and the technical expertise and assistance provided by BIFI-ZCAM (Universidad de Zaragoza).
dc.description.abstractIn the three-dimensional Heisenberg spin glass in a random field, we study the properties of the inherent structures that are obtained by an instantaneous cooling from infinite temperature. For a not too large field the density of states g(ω) develops localized soft plastic modes and reaches zero as ω^4 (for large fields a gap appears). When we perturb the system adding a force along the softest mode, one reaches very similar minima of the energy, separated by small barriers, that appear to be good candidates for classical two-level systems.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipIstituto Nazionale di Alta Matematica "F. Severi" (INdAM), Italia
dc.description.sponsorshipCentre national de la recherche scientifique (CNRS), Francia
dc.description.sponsorshipGREFI-MEFI (Gruppo di Ricerca Europeo Franco-Italiano: Fisica e Matematica)
dc.description.sponsorshipPrograma de Formación de Profesorado Universitario (FPU), MEC
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35676
dc.identifier.doi10.1103/PhysRevLett.115.267205
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.115.267205
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24341
dc.issue.number26
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDCRIPHERASY (247328)
dc.relation.projectIDFIS2012-35719-C02
dc.relation.projectIDGDRE 224
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordPhysics
dc.subject.keywordMultidisciplinary
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleSoft Modes, Localization, and Two-Level Systems in Spin Glasses
dc.typejournal article
dc.volume.number115
dcterms.references1. W. A. Phillips, Amorphous Solids: Low-Temperature Properties, edited by W. A. Phillips, in Topics in Current Physics Vol. 24 (Springer-Verlag, Berlin, 1981). 2. U. Buchenau, N. Nücker, and A. J. Dianoux, Phys. Rev. Lett. 53, 2316 (1984). 3. V. Malinovsky, V. Novikov, and A. Sokolov, Phys. Lett. A 153, 63 (1991). 4. V. Gurarie and J. T. Chalker, Phys. Rev. B 68, 134207 (2003). 5. V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B 67, 094203 (2003). 6. H. G. E. Hentschel, S. Karmakar, E. Lerner, and I. Procaccia, Phys. Rev. E 83, 061101 (2011). 7. J. Lin and M. Wyart, arXiv:1506.03639. 8. A. L. Ning Xu, D. M. Sussman, and S. R. Nagel, Density of states for normal modes near instabilities in glasses modeled by jammed packings (to be published). 9. M. Wyart, S. Nagel, and T. Witten, Europhys. Lett. 72, 486 (2005). 10. M. Wyart, Phys. Rev. Lett. 109, 125502 (2012). 11. C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E 68, 011306 (2003). 12. S. Franz, G. Parisi, P. Urbani, and F. Zamponi, arXiv:1501.03397. 13. S. Franz, G. Parisi, P. Urbani, and F. Zamponi, Proc. Natl. Acad. Sci. U.S.A. 112, 14539 (2015). 14. M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro, Phys. Rev. Lett. 52, 1156 (1984). 15. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Nat. Commun. 5, 3725 (2014). 16. M. Mézard, G. Parisi, and M. Virasoro, Spin-Glass Theory and Beyond (World Scientific, Singapore, 1987). 17. C. Lupo, G. Parisi, and F. Ricci-Tersenghi (to be published). 18. F. Barahona, J. Phys. A 15, 3241 (1982). 19. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.115.267205, which includes Refs. [20–24], for the parameters of the simulations, how to minimize the energy and a comparison between different types of IS, a derivation of the Hessian matrix, the F(λ) for all the simulated fields, the eigenvector correlation function, a verification that the forcings were in the linear response regime, technical details on how the hops between valleys were measured, some phenomenology on the rearrangements due to the forcings, and measurements of the energy barriers in our two-level systems. For more generic data and discussions, see also Ref. [25]. 20. M. Baity-Jesi, Master’s thesis, Sapienza, Universitá di Roma, 2011, arXiv:1503.08409. 21. M. Baity-Jesi and G. Parisi, Phys. Rev. B 91, 134203 (2015). 22. D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, 3rd ed. (World Scientific, Singapore, 2005). 23. L. A. Fernandez, V. Martin-Mayor, S. Perez-Gaviro, A. Tarancon, and A. P. Young, Phys. Rev. B 80, 024422 (2009). 24. M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960). 25. M. Baity-Jesi, Ph.D. thesis, Universidad Complutense de Madrid and Sapienza Università di Roma, 2015. 26. P. Anderson, Mater. Res. Bull. 5, 549 (1970). 27. A. J. Bray and M. A. Moore, J. Phys. C 14, 2629 (1981). 28. T. S. Grigera, V. Martin-Mayor, G. Parisi, P. Urbani, and P. Verrocchio, J. Stat. Mech. (2011) P02015. 29. In the case of structural glasses, the authors of Refs. [30, 31, 32, 33] find g(ω)∼ω2 is valid for any spatial dimension. The origin of this different behavior should be investigated carefully. 30. M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, Phys. Rev. E 72, 051306 (2005). 31. E. Lerner, G. During, and M. Wyart, Soft Matter 9, 8252 (2013). 32. E. DeGiuli, A. Laversanne-Finot, G. During, E. Lerner, and M. Wyart, Soft Matter 10, 5628 (2014). 33. E. DeGiuli, E. Lerner, and M. Wyart, J. Chem. Phys. 142, 164503 (2015). 34. Sharma and A. P. Young, Phys. Rev. E 81, 061115 (2010). 35. W. Kob, S. Roldán-Vargas, and L. Berthier, Nat. Phys. 8, 164 (2012). 36. C. Cammarota and G. Biroli, J. Chem. Phys. 138, 12A547 (2013). 37. C. Brito, G. Parisi, and F. Zamponi, Soft Matter 9, 8540 (2013). 38. S. Gokhale, K. Hima Nagamanasa, R. Ganapathy, and A. K. Sood, Nat. Commun. 5, 4685 (2014). 39. K. Hima Nagamanasa, S. Gokhale, A. K. Sood, and R. Ganapathy, Nat. Phys. 11, 403 (2015). 40. R. B. Grzonka and M. A. Moore, J. Phys. C 17, 2785 (1984). 41. M. Baity-Jesi, V. Martín-Mayor, G. Parisi, and S. Pérez-Gaviro (to be published). 42. K. Huang, Statistical Mechanics, 2nd ed. (John Wiley and Sons, Hoboken, NJ, 1987). 43. T. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, New York, 1978). 44. P. Turchi, F. Ducastelle, and G. Treglia, J. Phys. C 15, 2891 (1982). 45. J. L. Alonso, L. A. Fernández, F. Guinea, V. Laliena, and V. Martín-Mayor, Phys. Rev. B 63, 054411 (2001). 46. D. Sorensen, R. Lehoucq, C. Yang, and K. Maschhoff, Arnoldi package (arpack), www.caam.rice.edu/software/ARPACK/. 47. The method of the moments returns the full density of states, but it is not precise at the tails. With arpack we can calculate exactly the smallest eigenvalues, but only a small number of them. So, when we want to show the whole spectrum, we need to use the method of the moments, while when we show the softest part of the spectrum we need arpack. 48. The value γ=2.5 is also hypothesized in Ref. [4], through a fourth-order expansion of a single coordinate potential of the minimum of the energy. 49. N. Xu, V. Vitelli, A. J. Liu, and S. R. Nagel, Europhys. Lett. 90, 56001 (2010). 50. E. DeGiuli, E. Lerner, C. Brito, and M. Wyart, Proc. Natl. Acad. Sci. U.S.A. 111, 17054 (2014). 51. P. Charbonneau, E. I. Corwin, G. Parisi, and F. Zamponi, Phys. Rev. Lett. 114, 125504 (2015). 52. Inherent structures that were obtained by relaxing an infinite-temperature configuration. 53. The overlap qif between |s⃗ (IS)⟩ and |IS(ih)⟩ is defined as qif≡(1/N)∑xqif,x, with qif,x=s⃗ (IS)x⋅s⃗ x(ih), where s⃗ x(ih) are the spins of the configuration |IS(ih)⟩. 54. P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972). 55. W. Phillips, J. Low Temp. Phys. 7, 351 (1972). 56. W. A. Phillips, Rep. Prog. Phys. 50, 1657 (1987). 57. J. Lisenfeld, G. Grabovskij, C. Mller, J. Cole, G. Weiss, and A. Ustinov, Nat. Commun. 6, 6182 (2015). 58. T. Pérez-Castañeda, R. J. Jiménez-Riobóo, and M. A. Ramos, arXiv:1510.07806 [Philos. Mag. (to be published)].
dspace.entity.typePublication
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication.latestForDiscovery061118c0-eadf-4ee3-8897-2c9b65a6df66

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MartínMayorV LIBRE 40.pdf
Size:
420.43 KB
Format:
Adobe Portable Document Format

Collections