Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nonequilibrium potential and fluctuation theorems for quantum maps

dc.contributor.authorManzano Paule, Gonzalo
dc.contributor.authorHorowitz, Jordan
dc.contributor.authorRodríguez Parrondo, Juan Manuel
dc.date.accessioned2023-06-18T06:48:05Z
dc.date.available2023-06-18T06:48:05Z
dc.date.issued2015-09-21
dc.description©2015 American Physical Society. This work has been supported by grants ENFASIS (Grant No. FIS2011-22644) and TerMic (Grant No. FIS2014-52486-R) from the Spanish Government. G.M.P. acknowledges Grant No. BES-2012-054025. This work also benefited from the COST Action MP1209.
dc.description.abstractWe derive a general fluctuation theorem for quantum maps. The theorem applies to a broad class of quantum dynamics, such as unitary evolution, decoherence, thermalization, and other types of evolution for quantum open systems. The theorem reproduces well-known fluctuation theorems in a single and simplified framework and extends the Hatano-Sasa theorem to quantum nonequilibrium processes. Moreover, it helps to elucidate the physical nature of the environment that induces a given dynamics in an open quantum system.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipENFASIS from Spanish Government
dc.description.sponsorshipTerMic from Spanish Government
dc.description.sponsorshipCOST Action
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34233
dc.identifier.doi10.1103/PhysRevE.92.032129
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.92.032129
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24232
dc.issue.number3
dc.journal.titlePhysical review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2011-22644
dc.relation.projectIDFIS2014-52486-R
dc.relation.projectIDBES-2012-054025
dc.relation.projectIDMP1209
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordEntropy production
dc.subject.keywordHeat
dc.subject.keywordSemigroups
dc.subject.keywordSystems
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleNonequilibrium potential and fluctuation theorems for quantum maps
dc.typejournal article
dc.volume.number92
dcterms.references[1] K. Kraus, A. B¨ohm, J. D. Dollard, and W. H. Wootters, States, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Physics (Springer-Verlag, Berlin, 1983). [2] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002). [3] S. Yukawa, arXiv:cond-mat/0108421v2. [4] T. Sagawa, in Lectures on Quantum Computing, Thermodynamics and Statistical Physics, Kinki University Series on Quantum Computing, Vol. 8, edited by M. Nakahara (World Scientific, Singapore, 2013). [5] J. M. Horowitz and T. Sagawa, J. Stat. Phys. 156, 55 (2014). [6] J. Goold and K. Modi, arXiv:1407.4618v1. [7] F. Binder, S. Vinjanampathy, K. Modi, and J. Goold, Phys. Rev. E 91, 032119 (2015). [8] M. Campisi, P. H¨anggi, and P. Talkner, Rev. Mod. Phys. 83, 771 (2011). [9] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009). [10] S. Deffner and E. Lutz, Phys. Rev. Lett. 107, 140404 (2011). [11] M. Campisi, P. Talkner, and P. Hänggi, Phys. Rev. Lett. 105, 140601 (2010). [12] M. Campisi, P. Talkner, and P. Hänggi, Phys. Rev. E 83, 041114 (2011). [13] G. Watanabe, B. P. Venkatesh, P. Talkner, M. Campisi, and P. Hänggi, Phys. Rev. E 89, 032114 (2014). [14] G. E. Crooks, Phys. Rev. A 77, 034101 (2008). [15] J. M. Horowitz and J.M. R. Parrondo, New. J. Phys. 15, 085028 (2013). [16] R. Chetritie and K. Mallick, J. Stat. Phys. 148, 480 (2012). [17] F. Liu, Phys. Rev. E 89, 042122 (2014). [18] F. Liu, Phys. Rev. E 90, 032121 (2014). [19] A. E. Rastegin, J. Stat. Mech. (2013) P06016. [20] A. E. Rastegin and K. ˙ Zyczkowski, Phys. Rev. E 89, 012127 (2014). [21] T. Albash, D. A. Lidar, M. Marvian, and P. Zanardi, Phys. Rev. E 88, 032146 (2013). [22] D. Kafri and S. Deffner, Phys. Rev. A 86, 044302 (2012). [23] J. Goold, M. Paternostro, and K. Modi, Phys. Rev. Lett. 114, 060602 (2015). [24] M. O. Scully, M. S. Zubairy, G. S. Agarwal, and H. Walther, Science 299, 862 (2003). [25] E. Lutz and R. Dillenschneider, Europhys. Lett. 88, 50003 (2009). [26] T. Hatano and S.-i. Sasa, Phys. Rev. Lett. 86, 3463 (2001). [27] H. Spohn, J. Math. Phys. 19, 1227 (1978). [28] J. Prost, J. F. Joanny, and J. M. R. Parrondo, Phys. Rev. Lett. 103, 090601 (2009). [29] H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, UK, 2010). [30] F. Haake, Quantum Signatures of Chaos, Springer Series in Synergetics, 3rd. ed. (Springer, Berlin, 2010). [31] D. Andrieux and P. Gaspard, Phys. Rev. Lett. 100, 230404 (2008). [32] C. Maes, J. Stat. Phys. 95, 367 (1999). [33] P. I. Hurtado, C. Perez-Espigares, J. J. del Pozo, and P. L. Garrido, Proc. Natl. Acad. Sci. U.S.A. 108, 7704 (2011). [34] D. Lacoste and P. Gaspard, Phys. Rev. Lett. 113, 240602 (2014). [35] J. M. Horowitz, Phys. Rev. E 85, 031110 (2012). [36] R. Alicki, D. A. Lidar, and P. Zanardi, Phys. Rev. A 73, 052311(2006). [37] K. Szczygielski, D. Gelbwaser-Klimovsky, and R. Alicki, Phys. Rev. E 87, 012120 (2013). [38] A. Rivas and S. F. Huelga, Open Quantum Systems: An Introduction (Springer, Berlin, 2012). [39] R. Kawai, J. M. R. Parrondo, and C. Van den Broeck, Phys. Rev. Lett. 98, 080602 (2007). [40] M. Esposito and C. Van den Broeck, Phys. Rev. E 82, 011143 (2010). [41] C. Van den Broeck and M. Esposito, Phys. Rev. E 82, 011144 (2010). [42] M. Esposito and C. Van den Broeck, Phys. Rev. Lett. 104, 090601 (2010). [43] V. Y. Chernyak, M. Chertkov, and C. Jarzynski, J. Stat. Mech. (2006) P08001. [44] T. Speck and U. Seifert, J. Phys. A: Math. Gen. 38, L581 (2005). [45] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005). [46] T. Monnai, Phys. Rev. E 72, 027102 (2005). [47] T. B. Batalh˜ao, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, and R. M. Serra, Phys. Rev. Lett. 113, 140601 (2014). [48] I. Bentsoon and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge, University Press, Cambridge, UK, 2006). [49] I. Callens, W. De Roeck, T. Jacobs, C. Maes, and K. Netocný, Physica D 187, 383 (2004). [50] W. De Roeck and C. Maes, Phys. Rev. E 69, 026115 (2004). [51] P. Faist, J. Oppenheim, and R. Renner, New J. Phys. 17, 043003 (2015). [52] F. Fagnola and V. Umanità, Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 10, 335 (2007). [53] R. Alicki, J. Phys. A 12, L103 (1979). [54] H. Spohn and J. L. Lebowitz, in Advances in Chemical Physics: For Ilya Prigogine, Vol. 38, edited by S. A. Rice (JohnWiley & Sons, Hoboken, NJ, 1978). [55] F. W. J. Hekking and J. P. Pekola, Phys. Rev. Lett. 111, 093602 (2013). [56] J. Derezinski, W. De Roeck, and C. Maes, J. Stat. Phys. 131, 341 (2008). [57] G. E. Crooks, J. Stat. Mech. (2008) P10023. [58] T. Albash, S. Boixo, D. A. Lidar, and P. Zanardi, New J. Phys. 14, 123016 (2012). [59] S. Suomela, J. Salmilehto, I. G. Savenko, T. Ala-Nissila, and M. Möttönen, Phys. Rev. E 91, 022126 (2015). [60] G. B. Cuetara, A. Engel, and M. Esposito, New J. Phys. 17, 055002 (2015). [61] F. Fagnola (private communication).
dspace.entity.typePublication
relation.isAuthorOfPublication03f52481-0af3-4e8d-bfb1-c47751e8fea5
relation.isAuthorOfPublication.latestForDiscovery03f52481-0af3-4e8d-bfb1-c47751e8fea5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RParrondo 04 LIBRE.pdf
Size:
165.04 KB
Format:
Adobe Portable Document Format

Collections