On the converse of Tietze-Urysohn's extension theorem.
dc.contributor.author | Garrido, M. Isabel | |
dc.contributor.author | Jaramillo Aguado, Jesús Ángel | |
dc.date.accessioned | 2023-06-20T18:45:47Z | |
dc.date.available | 2023-06-20T18:45:47Z | |
dc.date.issued | 1999 | |
dc.description.abstract | From the text: "Problem A: Characterize (normal) spaces in which every C -embedded subset is closed. Problem B: Characterize (normal) spaces in which every C ∗ -embedded subset is closed. Our aim here is to call attention to the above problems, and provide some partial results in this line. Question C: Suppose that X and Y are completely regular spaces in which every C -embedded subset is closed. If C(X) is isomorphic to C(Y) , is then X homeomorphic to Y ? Question D: Suppose that X and Y are completely regular spaces in which every C ∗ -embedded subset is closed. If C ∗ (X) is isomorphic to C ∗ (Y) , is then X homeomorphic to Y ?'' | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21694 | |
dc.identifier.issn | 0918-4732 | |
dc.identifier.officialurl | http://qagt.za.org/year1996?vol=19 | |
dc.identifier.relatedurl | http://qagt.za.org/home | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58540 | |
dc.issue.number | 1 | |
dc.journal.title | Questions and Answers in General Topology | |
dc.page.final | 34 | |
dc.page.initial | 31 | |
dc.publisher | Symposium of General Topology | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | closedness | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | On the converse of Tietze-Urysohn's extension theorem. | |
dc.type | journal article | |
dc.volume.number | 17 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8b6e753b-df15-44ff-8042-74de90b4e3e9 | |
relation.isAuthorOfPublication.latestForDiscovery | 8b6e753b-df15-44ff-8042-74de90b4e3e9 |