Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the converse of Tietze-Urysohn's extension theorem.

dc.contributor.authorGarrido, M. Isabel
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.date.accessioned2023-06-20T18:45:47Z
dc.date.available2023-06-20T18:45:47Z
dc.date.issued1999
dc.description.abstractFrom the text: "Problem A: Characterize (normal) spaces in which every C -embedded subset is closed. Problem B: Characterize (normal) spaces in which every C ∗ -embedded subset is closed. Our aim here is to call attention to the above problems, and provide some partial results in this line. Question C: Suppose that X and Y are completely regular spaces in which every C -embedded subset is closed. If C(X) is isomorphic to C(Y) , is then X homeomorphic to Y ? Question D: Suppose that X and Y are completely regular spaces in which every C ∗ -embedded subset is closed. If C ∗ (X) is isomorphic to C ∗ (Y) , is then X homeomorphic to Y ?''
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21694
dc.identifier.issn0918-4732
dc.identifier.officialurlhttp://qagt.za.org/year1996?vol=19
dc.identifier.relatedurlhttp://qagt.za.org/home
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58540
dc.issue.number1
dc.journal.titleQuestions and Answers in General Topology
dc.page.final34
dc.page.initial31
dc.publisherSymposium of General Topology
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.1
dc.subject.keywordclosedness
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn the converse of Tietze-Urysohn's extension theorem.
dc.typejournal article
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Collections