Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Insights on the Cesàro operator: shift semigroups and invariant subspaces

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

A closed subspace is invariant under the Cesàro operator C on the classical Hardy space H2 (D) if and only if its orthogonal complement is invariant under the C0-semigroup of composition operators induced by the affine maps φt(z) = e−t z + 1 − e −t for t ≥ 0 and z ∈ D. The corresponding result also holds in the Hardy spaces Hp(D) for 1 < p < ∞. Moreover, in the Hilbert space setting, by linking the invariant subspaces of C to the lattice of the closed invariant subspaces of the standard right-shift semigroup acting on a particular weighted L 2 -space on the line, we exhibit a large class of non-trivial closed invariant subspaces and provide a complete characterization of the finite codimensional ones, establishing, in particular, the limits of such an approach towards describing the lattice of all invariant subspaces of C. Finally, we present a functional calculus which allows us to extend a recent result by Mashreghi, Ptak and Ross regarding the square root of C and discuss its invariant subspaces.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections