Insights on the Cesàro operator: shift semigroups and invariant subspaces

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
A closed subspace is invariant under the Cesàro operator C on the classical Hardy space H2 (D) if and only if its orthogonal complement is invariant under the C0-semigroup of composition operators induced by the affine maps φt(z) = e−t z + 1 − e −t for t ≥ 0 and z ∈ D. The corresponding result also holds in the Hardy spaces Hp(D) for 1 < p < ∞. Moreover, in the Hilbert space setting, by linking the invariant subspaces of C to the lattice of the closed invariant subspaces of the standard right-shift semigroup acting on a particular weighted L 2 -space on the line, we exhibit a large class of non-trivial closed invariant subspaces and provide a complete characterization of the finite codimensional ones, establishing, in particular, the limits of such an approach towards describing the lattice of all invariant subspaces of C. Finally, we present a functional calculus which allows us to extend a recent result by Mashreghi, Ptak and Ross regarding the square root of C and discuss its invariant subspaces.
[1] A. Aleman, A class of integral operators on spaces of analytic functions. Topics in complex analysis and operator theory, 3–30, Univ. Málaga, Málaga, 2007. [2] A. Aleman and B. Korenblum, Volterra invariant subspaces of Hp. Bull. Sci. Math., 132 (2008), no. 6, 510–528. [3] A. Aleman and A.G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (2) (1997) 337-356. [4] A.G. Arvanitidis and A.G. Siskakis, Cesàro operators on the Hardy spaces of the half-plane. Canad. Math. Bull. 56 (2013), no. 2, 229–240. [5] E. Berkson and H. Porta, Semigroups of analytic functions and composition operators. Michigan Math. J. 25 (1978), no. 1, 101–115. [6] F. Bracci, M. D. Contreras and S. Díaz-Madrigal, Continuous semigroups of holomorphic self-maps of the unit disc, Springer Monographs in Mathematics (2020). [7] J.R. Carmo and S.W. Noor, Universal composition operators. J. Operator Theory 87 (2022), no. 1, 137–156. [8] C.C. Cowen, Subnormality of the Cesàro operator and a semigroup of composition operators, Indiana Univ. Math. J. 33 (2) (1984) 305–318. [9] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995. [10] Y. Domar, Translation invariant subspaces of weighted lp and Lp spaces, Math. Scand. 49 (1981), 133–144. [11] Y. Domar, Extensions of the Titchmarsh convolution theorem with application in the theory of invariant subspaces, Proc. London Math. Soc. 46 (1983), 288–300. [12] Y. Domar, A solution of the translation-invariant subspace problem for weighted Lp on R, R + or Z, Radical Banach algebras and automatic continuity, 214–226, Lecture Notes in Math., 975, Springer, 1983. [13] Y. Domar, Translation-invariant subspaces of weighted Lp, Contemp. Math., 91, Amer. Math. Soc., Providece, RI, 1989. [14] N. Dunford and J.T. Schwartz, Linear operators. Part I. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988. [15] C. Foia ̧s, Spectral maximal spaces and decomposable operators in Banach space, Arch. Math. 14 (1963) 341–349. [16] P.A. Fuhrmann, Linear systems and operators in Hilbert space. McGraw-Hill International Book Co., New York, 1981. [17] E. A. Gallardo-Gutierrez and J.R. Partington, Invariant subspaces for translation, dilation and multiplication semigroups. Journal d’Analyse Math., 107 (2009), 65–78. [18] E. A. Gallardo-Gutierrez and J.R. Partington, C0-semigroups of 2-isometries and Dirichlet spaces. Rev. Mat. Iberoam., 34 (2018), no. 3, 1415–1425. [19] E. A. Gallardo-Gutierrez, J.R. Partington and D.J. Rodríguez, An extension of a theorem of Domar on invariant subspaces. Acta Sci. Math. (Szeged) 83 (2017), no. 1–2, 271–290. [20] E. A. Gallardo-Gutiérrez, J.R. Partington and D.J. Rodríguez, Non-standard translation-invariant subspaces for weighted L2 on R+, Harmonic analysis, function theory, operator theory, and their applications, 125–132, Theta Ser. Adv. Math., 19, (2017). [21] M. Haase, The functional calculus for sectorial operators. Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006. [22] T.L. Kriete and D. Trutt, The Cesàro operator in l2 is subnormal. Amer. J. Math. 93 (1971), 215–225. [23] T. L. Kriete and D. Trutt, On the Cesàro operator. Indiana Univ. Math. J. 24 (1974/75), 197–214. [24] K. Laursen and M. Neumann, An introduction to local spectral theory, London Math. Soc. Monographs, The Clarendon Press, Oxford University Press, New York, 2000. [25] P.D. Lax, Translation invariant subspaces, Acta Math. , 101 (1959), 163–178. [26] J. Mashreghi, M. Ptak and W.T. Ross, Square roots of some classical operators, preprint, 2021. [27] V.G. Miller, T.L. Miller and R.C. Smith, Bishop’s property (β) and the Cesàro operator, J. London Math. Soc. (2) 58 (1) (1998) 197–207. [28] N.K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz. Translated from the French by Andreas Hartmann. Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence, RI, 2002. [29] N. K. Nikolskii, Unicellularity and non-unicellularity of weighted shift operators, Dokl. Ak. Nauk SSR 172 (1967), 287–290. [30] A.-M. Persson, On the spectrum of the Ces`aro operator on spaces of analytic functions, J. Math. Anal. Appl. 340 (2008) 1180–1203. [31] W. Rudin, Real and complex analysis, 3rd edition, McGraw-Hill, New York, 1987. [32] A.G. Siskakis, Composition semigroups and the Cesàro operator on Hp, J. London Math. Soc. (2) 36 (1987), 153–164 [33] A.G. Siskakis, The Ces`aro operator is bounded on H1, Proc. Amer. Math. Soc. 110 (1990), 461–462.