Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Estimating Lyapunov exponents on a noisy environment by global and local Jacobian indirect algorithms

dc.contributor.authorEscot Mangas, Lorenzo
dc.contributor.authorSandubete Galán, Julio Emilio
dc.contributor.editorSimos, Theodore
dc.date.accessioned2024-02-06T15:58:44Z
dc.date.available2024-02-06T15:58:44Z
dc.date.issued2023
dc.description.abstractMost of the existing methods and techniques for the detection of chaotic behaviour from empirical time series try to quantify the well-known sensitivity to initial conditions through the estimation of the so-called Lyapunov exponents corresponding to the data generating system, even if this system is unknown. Some of these methods are designed to operate in noise-free environments, such as those methods that directly quantify the separation rate of two initially close trajectories. As an alternative, this paper provides two nonlinear indirect regression methods for estimating the Lyapunov exponents on a noisy environment. We extend the global Jacobian method, by using local polynomial kernel regressions and local neural net kernel models. We apply such methods to several noise-contaminated time series coming from different data generating processes. The results show that in general, the Jacobian indirect methods provide better results than the traditional direct methods for both clean and noisy time series. Moreover, the local Jacobian indirect methods provide more robust and accurate fit than the global ones, with the methods using local networks obtaining more accurate results than those using local polynomials.en
dc.description.departmentDepto. de Economía Aplicada, Pública y Política
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipUniversidad Camilo José Cela
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationEscot, L.; Sandubete, J.E., “Estimating Lyapunov exponents on a noisy environment by global and local Jacobian indirect algorithms”. J. Applied Mathematics and Computation, (0096-3003), vol 436, 1 January, 2023, 127498.
dc.identifier.doi10.1016/j.amc.2022.127498
dc.identifier.essn1873-5649
dc.identifier.issn0096-3003
dc.identifier.officialurlhttps://doi.org/10.1016/j.amc.2022.127498
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0096300322005720?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/99625
dc.issue.number1
dc.journal.titleApplied Mathematics and Computation
dc.language.isoeng
dc.page.final17
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094901-B-I00/ES/EQUIPARACION GRADUAL DEL PERMISO DE PATERNIDAD CON EL DE MATERNIDAD EN ESPAÑA: EVALUACION, SESGOS, PERSPECTIVAS Y POLITICAS DE IGUALDAD/
dc.rights.accessRightsrestricted access
dc.subject.cdu330.43
dc.subject.jelC32
dc.subject.keywordChaotic time series
dc.subject.keywordLyapunov exponents
dc.subject.keywordLyapunov exponents Jacobian indirect methods
dc.subject.keywordLyapunov exponents Global and local neural net models
dc.subject.keywordLyapunov exponents Local polynomial kernel models
dc.subject.keywordLyapunov exponent Local neural net kernel models
dc.subject.ucmEconometría (Estadística)
dc.subject.ucmEstadística aplicada
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmEconometría (Economía)
dc.subject.unesco1209.15 Series Temporales
dc.subject.unesco1202.19 Ecuaciones Diferenciales Ordinarias
dc.subject.unesco1209.03 Análisis de Datos
dc.subject.unesco5302 Econometría
dc.titleEstimating Lyapunov exponents on a noisy environment by global and local Jacobian indirect algorithmsen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number436
dspace.entity.typePublication
relation.isAuthorOfPublicationd7f5bd78-98f7-44ac-b4b5-df58a4ed3f84
relation.isAuthorOfPublicationa4bfb8a7-dbac-4c38-984d-f379456e9cf8
relation.isAuthorOfPublication.latestForDiscoveryd7f5bd78-98f7-44ac-b4b5-df58a4ed3f84

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Estimating_Lyapuno_exponents.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format

Collections