Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Numerical model of non-isothermal pervaporation in a rectangular channel

Loading...
Thumbnail Image

Full text at PDC

Publication date

2005

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier B. V.
Citations
Google Scholar

Citation

Abstract

A numerical model of non-isothermal pervaporation was developed to investigate the development of the velocity, concentration and temperature fields in rectangular membrane module geometry. The model consists of the coupled Navier-Stokes equations to describe the flow field, the energy equation for the temperature field, and the species convection-diffusion equations for the concentration fields of the solution species. The coupled nonlinear transport equations were solved simultaneously for the velocity, temperature and concentration fields via a finite element approach. Simulation test cases for trichloroethylene/water, ethanol/water and iso-propanol/water pervaporation, under laminar flow conditions, revealed temperature drop axially along the module and orthogonal to the membrane surface. The nonlinear character of the concentration and temperature boundary-layers are most significant near the membrane surface. Estimation of the mass transfer coefficient assuming isothermal assumption conditions can significantly deviate from the non-isothermal predictions. For laminar conditions, predictions of the feed-side mass transfer coefficient converged to predictions from the classical Leveque solution as the feed temperature approached the permeate temperature.

Research Projects

Organizational Units

Journal Issue

Description

© 2005 Elsevier B.V.

UCM subjects

Unesco subjects

Keywords

Collections