Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Testing for a Common Volatility Process and Information Spillovers in Bivariate Financial Time Series Models

dc.contributor.authorChen, Jinghui
dc.contributor.authorKobayashi, Masahito
dc.contributor.authorMcAleer, Michael
dc.date.accessioned2023-06-18T10:25:46Z
dc.date.available2023-06-18T10:25:46Z
dc.date.issued2016
dc.description.abstractThe paper considers the problem as to whether financial returns have a common volatility process in the framework of stochastic volatility models that were suggested by Harvey et al. (1994). We propose a stochastic volatility version of the ARCH test proposed by Engle and Susmel (1993), who investigated whether international equity markets have a common volatility process. The paper also checks the hypothesis of frictionless cross-market hedging, which implies perfectly correlated volatility changes, as suggested by Fleming et al. (1998). The paper uses the technique of Chesher (1984) in differentiating an integral that contains a degenerate density function in deriving the Lagrange Multiplier test statistic.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedFALSE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36253
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/27561
dc.issue.number04
dc.language.isoeng
dc.page.total36
dc.publisherFacultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rights.accessRightsopen access
dc.subject.jelC12
dc.subject.jelC58
dc.subject.jelG01
dc.subject.jelG11
dc.subject.keywordVolatility comovement
dc.subject.keywordCross-market hedging
dc.subject.keywordSpillovers
dc.subject.keywordContagion.
dc.subject.ucmEconometría (Economía)
dc.subject.ucmFinanzas
dc.subject.unesco5302 Econometría
dc.titleTesting for a Common Volatility Process and Information Spillovers in Bivariate Financial Time Series Models
dc.typetechnical report
dc.volume.number2016
dcterms.referencesAsai, M.; M. McAleer, and J. Yu. Multivariate stochastic volatility: A review. Econometric Reviews, 25(2-3):145–175, 2006. Chernoff, H., On the distribution of the likelihood ratio. Annals of Mathematical Statistics, 25 (3):573–578, 1954. Chesher, A., Testing for neglected heterogeneity. Econometrica, 52(4):865–872, 1984. Cipollini, A. and G. Kapetanios. A stochastic variance factor model for large datasets and an application to s&p data. Economics Letters, 100(1):130–134, 2008. Engle, R.F. and S. Kozicki. Testing for common features. Journal of Business & Economic Statistics, 11(4):369–380, 1993. Engle, R.F., Vand R. Susmel. Common volatility in international equity markets. Journal of Business & Economic Statistics, 11(2):167–176, 1993. Fleming, J., C. Kirby, and B. Ostdiek. Information and volatility linkages in the stock, bond, and money markets. Journal of Financial Economics, 49(1):111–137, 1998. Harvey, A., E. Ruiz, and N. Shephard. Multivariate stochastic variance models. Review of Economic Studies, 61(2):247–264, 1994. Stock, J.H. and M. W. Watson. Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460):1167, 2002. Tauchen, G.E. and M. Pitts. The price variability-volume relationship on speculative markets. Econometrica, 51(2):485–505, 1983. Watanabe, T. A non-linear filtering approach to stochastic volatility models with an application to daily stock returns. Journal of Applied Econometrics, 14(2):101–121, 1999.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1604.pdf
Size:
595.5 KB
Format:
Adobe Portable Document Format