Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

QFold: quantum walks and deep learning to solve protein folding

dc.contributor.authorMartín-Delgado Alcántara, Miguel Ángel
dc.contributor.authorCampos Ortiz, Roberto
dc.contributor.authorMoreno Casares, Pablo Antonio
dc.date.accessioned2023-11-24T16:37:45Z
dc.date.available2023-11-24T16:37:45Z
dc.date.issued2022
dc.description.abstractWe develop quantum computational tools to predict the 3D structure of proteins, one of the most important problems in current biochemical research. We explain how to combine recent deep learning advances with the well known technique of quantum walks applied to a Metropolis algorithm. The result, QFold, is a fully scalable hybrid quantum algorithm that, in contrast to previous quantum approaches, does not require a lattice model simplification and instead relies on the much more realistic assumption of parameterization in terms of torsion angles of the amino acids. We compare it with its classical analog for different annealing schedules and find a polynomial quantum advantage, and implement a minimal realization of the quantum Metropolis in IBMQ Casablanca quantum system.eng
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipU.S. Army Research Office
dc.description.sponsorshipMinisterio de Educación, Formación Profesional y Deportes (España)
dc.description.statuspub
dc.identifier.citationP. A. M. Casares, R. Campos, and M. A. Martin-Delgado, Quantum Sci. Technol. 7, 025013 (2022).
dc.identifier.doi10.1088/2058-9565/ac4f2f
dc.identifier.essn2058-9565
dc.identifier.officialurlhttps://doi.org/10.1088/2058-9565/ac4f2f
dc.identifier.relatedurlhttps://iopscience.iop.org/article/10.1088/2058-9565/ac4f2f
dc.identifier.urihttps://hdl.handle.net/20.500.14352/88980
dc.issue.number2
dc.journal.titleQuantum Science and Technology
dc.language.isoeng
dc.page.initial025013
dc.publisherIOP Science
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO-FEDER//FIS 2017-91460-EXP
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-099169-B-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/CAM-FEDER//S2018/TCS-4342 (QUITEMAD-CM)
dc.relation.projectIDinfo:eu-repo/grantAgreement/U.S. Army Research Office//W911NF-14-1-0103
dc.relation.projectIDinfo:eu-repo/grantAgreement/MECD//FPU17/03620
dc.relation.projectIDinfo:eu-repo/grantAgreement/CAM//IND2019/TIC17146
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordQuantum walks
dc.subject.keywordProtein structure prediction
dc.subject.keywordMetropolis Algorithms
dc.subject.keywordDeep leerning
dc.subject.keywordQuantum simulation
dc.subject.keywordQuantum metropolis
dc.subject.keywordQuantum advantage
dc.subject.ucmFísica (Física)
dc.subject.unesco2212 Física Teórica
dc.titleQFold: quantum walks and deep learning to solve protein foldingen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number7
dspace.entity.typePublication
relation.isAuthorOfPublication1cfed495-7729-410a-b898-8196add14ef6
relation.isAuthorOfPublication8962ecbe-5f71-4c6d-8db5-fabc3ff31a99
relation.isAuthorOfPublication.latestForDiscovery1cfed495-7729-410a-b898-8196add14ef6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Qfold.pdf
Size:
12 MB
Format:
Adobe Portable Document Format

Collections