QFold: quantum walks and deep learning to solve protein folding
dc.contributor.author | Martín-Delgado Alcántara, Miguel Ángel | |
dc.contributor.author | Campos Ortiz, Roberto | |
dc.contributor.author | Moreno Casares, Pablo Antonio | |
dc.date.accessioned | 2023-11-24T16:37:45Z | |
dc.date.available | 2023-11-24T16:37:45Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We develop quantum computational tools to predict the 3D structure of proteins, one of the most important problems in current biochemical research. We explain how to combine recent deep learning advances with the well known technique of quantum walks applied to a Metropolis algorithm. The result, QFold, is a fully scalable hybrid quantum algorithm that, in contrast to previous quantum approaches, does not require a lattice model simplification and instead relies on the much more realistic assumption of parameterization in terms of torsion angles of the amino acids. We compare it with its classical analog for different annealing schedules and find a polynomial quantum advantage, and implement a minimal realization of the quantum Metropolis in IBMQ Casablanca quantum system. | eng |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía, Comercio y Empresa (España) | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | European Commission | |
dc.description.sponsorship | U.S. Army Research Office | |
dc.description.sponsorship | Ministerio de Educación, Formación Profesional y Deportes (España) | |
dc.description.status | pub | |
dc.identifier.citation | P. A. M. Casares, R. Campos, and M. A. Martin-Delgado, Quantum Sci. Technol. 7, 025013 (2022). | |
dc.identifier.doi | 10.1088/2058-9565/ac4f2f | |
dc.identifier.essn | 2058-9565 | |
dc.identifier.officialurl | https://doi.org/10.1088/2058-9565/ac4f2f | |
dc.identifier.relatedurl | https://iopscience.iop.org/article/10.1088/2058-9565/ac4f2f | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/88980 | |
dc.issue.number | 2 | |
dc.journal.title | Quantum Science and Technology | |
dc.language.iso | eng | |
dc.page.initial | 025013 | |
dc.publisher | IOP Science | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO-FEDER//FIS 2017-91460-EXP | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-099169-B-I00 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM-FEDER//S2018/TCS-4342 (QUITEMAD-CM) | |
dc.relation.projectID | info:eu-repo/grantAgreement/U.S. Army Research Office//W911NF-14-1-0103 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU17/03620 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//IND2019/TIC17146 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 53 | |
dc.subject.keyword | Quantum walks | |
dc.subject.keyword | Protein structure prediction | |
dc.subject.keyword | Metropolis Algorithms | |
dc.subject.keyword | Deep leerning | |
dc.subject.keyword | Quantum simulation | |
dc.subject.keyword | Quantum metropolis | |
dc.subject.keyword | Quantum advantage | |
dc.subject.ucm | Física (Física) | |
dc.subject.unesco | 2212 Física Teórica | |
dc.title | QFold: quantum walks and deep learning to solve protein folding | en |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 7 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1cfed495-7729-410a-b898-8196add14ef6 | |
relation.isAuthorOfPublication | 8962ecbe-5f71-4c6d-8db5-fabc3ff31a99 | |
relation.isAuthorOfPublication.latestForDiscovery | 1cfed495-7729-410a-b898-8196add14ef6 |
Download
Original bundle
1 - 1 of 1