Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On a remarkable polyhedron geometrizing the figure eight knot cone manifold

dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T18:47:38Z
dc.date.available2023-06-20T18:47:38Z
dc.date.issued1995
dc.description.abstractThe authors define a one-parameter family of polyhedra P(a), 0<a≤5−25√−−−−−−−√, in three-dimensional spaces of constant curvature −∞<k(a)≤1. Identifying faces of P(a) in pairs by isometries gives rise to cone manifolds M(a). For example, k=−1 when a=13−−√, and M gives the hyperbolic structure on the complement in S3 of the figure-eight knot K, k=0 when a=12−−√, and M gives the Euclidean structure on the orbifold which results from (3,0)-surgery on K, while k=1 when a=5−25√−−−−−−−√, and M gives the spherical structure on the orbifold which results from (2,0)-surgery on K. M(0) is a degenerate hyperbolic structure on the torus bundle B over S1 which results from (0,1)-surgery on K (let Σ⊂B denote the core circle of the surgery). The other M(a) interpolate between these, and after rescaling, as a increases, give hyperbolic structures on B, singular along Σ, with cone angles ranging from 2π to zero, then hyperbolic [resp. spherical] structures on S3, singular along K, with cone angles ranging from zero to 2π/3 [resp. 2π/3 to π]. Elementary formulas are derived for the volumes of the (rescaled) cone manifolds, the lengths of the (rescaled) singular sets, and the cone angles, as functions of a. Also, the phenomenon of "spontaneous surgery'' at a=13−−√ is linked to a combinatorial change in P(a).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22199
dc.identifier.issn1340-5705
dc.identifier.officialurlhttp://journal.ms.u-tokyo.ac.jp/
dc.identifier.relatedurlhttp://journal.ms.u-tokyo.ac.jp/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58635
dc.issue.number3
dc.journal.titleJournal of Mathematical Sciences. The University of Tokyo
dc.language.isoeng
dc.page.final561
dc.page.initial501
dc.publisherGraduate School of Mathematical Sciences
dc.relation.projectIDPB92-0236.
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordDirichlet domain
dc.subject.keywordgeometric structure
dc.subject.keywordspace of constant curvature
dc.subject.keyword3-manifolds
dc.subject.keywordgeometric cone-manifolds
dc.subject.keywordsingular set
dc.subject.keywordfigure eight knot
dc.subject.ucmGeometría diferencial
dc.subject.ucmGeometria algebraica
dc.subject.ucmTopología
dc.subject.unesco1204.04 Geometría Diferencial
dc.subject.unesco1201.01 Geometría Algebraica
dc.subject.unesco1210 Topología
dc.titleOn a remarkable polyhedron geometrizing the figure eight knot cone manifold
dc.typejournal article
dc.volume.number2
dcterms.referencesBonahon, F. and L. Siebenmann, The classification of Seifert fibred 3-orbifolds, London Math. Soc. LNSA95 (1985), 19–85. Bowditch, B. H., Maclachlan, C. and A. W. Reid, Arithmetic hyperbolic surface bundles, Preprint (1993). Burde, G. and Zieschang, H., Knots, Studies in Mathematics 5. de Gruyter, Berlin, New York, 1985. Coxeter, H. S. M., Non-Euclidean Geometry, University of Toronto Press, 1968. Dunbar, W. D., Geometricorbifolds, Revista Mat. Univ. Compl. Madrid 1 (1988), 67–99. Helling, H., Kim, A. C. and J. L. Mennicke, On Fibonacci groups, (to appear). Hilden, H. M., Lozano, M. T. and J. M. Montesinos-Amilibia, On the Borromean Orbifolds:Geometry and Arithmetic., TOPOLOGY’90. Ohio State University, Math. Research Inst. Pub. 1 (B. Apanasov, W. Neumann, A. Reid and L. Siebenmann, eds.), De Gruyter, 1992, pp. 133–167. Hilden, H. M., Lozano, M. T. and J. M. Montesinos-Amilibia, A Characterization of ArithmeticSubgroups of SL(2,R) and SL(2,C), Math. Nach. 159 (1992), 245–270. Hilden, H. M., Lozano, M. T. and J. M. Montesinos-Amilibia, The arithmeticity of the Figure Eigth knot orbifold., TOPOLOGY’90.Ohio State University, Math. Research Inst. Pub. 1 (B. Apanasov, W. Neumann, A. Reid and L. Siebenmann, eds.), De Gruyter, 1992, pp. 169-183. Hilden, H. M., Lozano, M. T. and J. M. Montesinos-Amilibia, The arithmeticity of certain torus bundle cone 3-manifolds, To appear. Hodgson, C., Degeneration and regeneration of geometricstructures on three-manifolds, Ph.D. Thesis, Princeton University (1986). Jorgensen, T., Compact 3-manifolds of constant negative curvature fibering over the circle, Annals of Math. 106 (1977), 61–72. Milnor, J., HyperbolicGeometry: The First 150 Years, Proc. of Symposia in Pure Mat. 39 (1983), 25–40. Milnor, J., The Schl¨affli differential equality, Preprint (1993). Milnor, J., Notes on hyperbolicvolume, in [T] (1978). Maclachlan, C. and Reid, A., Commesurability classes of arithmetic kleinian groups and their fuchsian subgroups, Math. Proc. Camb. Phil. Soc. 102 (1987), 251–257. Mednyck, A. D. and A. Ju. Vesnin, On compact and non-compact hyperbolicmanifolds with the same volume, Preprint (1992). Reid, A. W., Arithmetickleinian groups and their fuchsian subgroups, Ph.D. Thesis, Aberdeen (1987). Rolfsen, D., Knots and links, Publish or Perish, Inc., 1976. Scott, P., The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401–487. Selberg, A., On discontinuous groups in higher dimensional symmetric spaces, Int. Colloq. Function Theory. TATA Inst. Fundamental Res. Bombay (1960), 147–164. Thurston, W., The Geometry and Topology of 3-Manifolds, Notes 1976-1978. Princeton University Press (to appear). Vigneras, M. F., Arithmetique des Algebres de Quaternions, LNMA800, Springer-Verlag, 1980. Vinberg, E. B., Geometry II, Encyclopaedia of Mathematical Sciences. VolA29, Springer-Verlag, 1992. Wolfram, S., MATHEMATICA, A System for Doing Mathematics by Computer.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos54.pdf
Size:
392.53 KB
Format:
Adobe Portable Document Format

Collections