Simulating Microswimmers Under Confinement With Dissipative Particle (Hydro) Dynamics
dc.contributor.author | Barriuso Gutiérrez, Carlos Miguel | |
dc.contributor.author | Martín Roca, José | |
dc.contributor.author | Bianco, Valentino | |
dc.contributor.author | Pagonabarraga, Ignacio | |
dc.contributor.author | Valeriani, Chantal | |
dc.date.accessioned | 2023-06-22T12:38:22Z | |
dc.date.available | 2023-06-22T12:38:22Z | |
dc.date.issued | 2022-07-22 | |
dc.description | CV acknowledges fundings from MINECO PID2019-105343GB-I00 and EUR2021-122001. I. Pagonabarraga acknowledges support from Ministerio de Ciencia, Innovación y Universidades MCIU/AEI/FEDER for financial support under grant agreement PGC2018-098373-B-100 AEI/FEDER-EU, from Generalitat de Catalunya under project 2017SGR-884, Swiss National Science Foundation Project No. 200021-175719 and the EU Horizon 2020 program through 766972-FET-OPEN NANOPHLOW. | |
dc.description.abstract | In this work we study microwimmers, whether colloids or polymers, embedded in bulk or in confinement. We explicitly consider hydrodynamic interactions and simulate the swimmers via an implementation inspired by the squirmer model. Concerning the surrounding fluid, we employ a Dissipative Particle Dynamics scheme. Differently from the Lattice-Boltzmann technique, on the one side this approach allows us to properly deal not only with hydrodynamics but also with thermal fluctuations. On the other side, this approach enables us to study microwimmers with complex shapes, ranging from spherical colloids to polymers. To start with, we study a simple spherical colloid. We analyze the features of the velocity fields of the surrounding solvent, when the colloid is a pusher, a puller or a neutral swimmer either in bulk or confined in a cylindrical channel. Next, we characterise its dynamical behaviour by computing the mean square displacement and the long time diffusion when the active colloid is in bulk or in a channel (varying its radius) and analyze the orientation autocorrelation function in the latter case. While the three studied squirmer types are characterised by the same bulk diffusion, the cylindrical confinement considerably modulates the diffusion and the orientation autocorrelation function. Finally, we focus our attention on a more complex shape: an active polymer. We first characterise the structural features computing its radius of gyration when in bulk or in cylindrical confinement, and compare to known results obtained without hydrodynamics. Next, we characterise the dynamical behaviour of the active polymer by computing its mean square displacement and the long time diffusion. On the one hand, both diffusion and radius of gyration decrease due to the hydrodynamic interaction when the system is in bulk. On the other hand, the effect of confinement is to decrease the radius of gyration, disturbing the motion of the polymer and thus reducing its diffusion. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO) | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades MCIU/AEI/FEDER AEI/FEDER-EU | |
dc.description.sponsorship | Generalitat de Catalunya | |
dc.description.sponsorship | Swiss National Science Foundation | |
dc.description.sponsorship | EU Horizon 2020 program | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/76649 | |
dc.identifier.doi | 10.3389/fphy.2022.926609 | |
dc.identifier.issn | 2296-424X | |
dc.identifier.officialurl | https://doi.org/10.3389/fphy.2022.926609 | |
dc.identifier.relatedurl | https://www.frontiersin.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/72972 | |
dc.journal.title | Frontiers in physics | |
dc.language.iso | eng | |
dc.publisher | Frontiers Media S.A | |
dc.relation.projectID | PID2019-105343GB-I00 | |
dc.relation.projectID | EUR2021-122001 | |
dc.relation.projectID | PGC2018-098373-B-100 | |
dc.relation.projectID | 2017SGR-884 | |
dc.relation.projectID | 200021-175719 | |
dc.relation.projectID | 766972-FET-OPEN NANOPHLOW | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 539.1 | |
dc.subject.keyword | Multiparticle collision dynamics | |
dc.subject.keyword | Hydrodynamics | |
dc.subject.keyword | Suspensions | |
dc.subject.keyword | Model | |
dc.subject.ucm | Física nuclear | |
dc.subject.unesco | 2207 Física Atómica y Nuclear | |
dc.title | Simulating Microswimmers Under Confinement With Dissipative Particle (Hydro) Dynamics | |
dc.type | journal article | |
dc.volume.number | 10 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 9322d741-cbc3-49ea-b706-15182c642d7b | |
relation.isAuthorOfPublication | a49a9cc0-df5e-4064-b273-0190370cb821 | |
relation.isAuthorOfPublication | bab899d3-b920-429c-9061-5d0cefd5d756 | |
relation.isAuthorOfPublication | 70e93697-1ddb-4497-977d-73fcf46c4837 | |
relation.isAuthorOfPublication.latestForDiscovery | 9322d741-cbc3-49ea-b706-15182c642d7b |
Download
Original bundle
1 - 1 of 1