Thermal bosonisation in the sine-Gordon and massive Thirring models

dc.contributor.authorGómez Nicola, Ángel
dc.contributor.authorSteer, D. A.
dc.date.accessioned2023-06-20T20:06:47Z
dc.date.available2023-06-20T20:06:47Z
dc.date.issued1999-05-31
dc.description© 1999 Elsevier Science B.V. We thank Peter Landshoff both for useful arguments and for originally drawing our attention in this direction. We are grateful to Tim Evans and Ray Rivers for numerous helpful discussions and to R.E Alvarez-Estrada for useful suggestions. A.G.N. has received support through CICYT, Spain, project AEN97-1693 and through a fellowship of MEC, Spain, and would like to thank the Imperial College Theory Group for their hospitality during the completion of this work. D.A.S. is supported by P.P.A.R.C. of the UK through a research fellowship and is a member of Girton College, Cambridge. This work was supported in part by the E.S.E
dc.description.abstractWe study bosonisation in the massive Thirring and sine-Gordon models at finite temperature T and non-zero fermion chemical potential μ. For that purpose we use both canonical operator and path-integral approaches, paying particular attention to the issues of thermal normal ordering and renormalisation. At T > 0 and μ = 0, the massive Thirring model bosonises to the sine Gordon model with the same T =0 identification between coupling constants. We prove that not only the partition functions of the two models coincide, as was recently shown, but also that thermal averages of zero-charge operators can be identified. In particular, analysis of the point split regularised fermion current then leads to the thermal equivalence between sine-Gordon kinks and Thirring fermions. At μ ≠ 0, T > 0 and working in perturbation theory about the massless Thirring model, we show that the bosonised theory is the sine-Gordon model plus an additional topological term which accounts for the existence of net fermion charge excitations (the fermions or the kinks) in the thermal bath. This result generalises one recently obtained for the massless case, and it is the two-dimensional version of the low- energy QCD chiral Lagrangian at finite baryon density.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT, Spain
dc.description.sponsorshipMEC (Spain)
dc.description.sponsorshipP.P.A.R.C. of the UK
dc.description.sponsorshipE.S.E
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30639
dc.identifier.doi10.1016/S0550-3213(99)00128-5
dc.identifier.issn0550-3213
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0550-3213(99)00128-5
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59583
dc.journal.titleNuclear physics B
dc.language.isoeng
dc.page.final499
dc.page.initial409
dc.publisherElsevier
dc.relation.projectIDAEN97-1693
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keyword2 Dimensions
dc.subject.keywordFinite-temperature
dc.subject.keywordCurrent-algebra
dc.subject.keywordWicks theorem
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleThermal bosonisation in the sine-Gordon and massive Thirring models
dc.typejournal article
dc.volume.number508
dcterms.references[1] S. Coleman, Phys. Rev. D 11 (1975) 2088. [2] K. Furuya, R.E. Gamboa Saravi and F.A. Schaposnik, Nucl. Phys. B 208 (1982) 159. [3] C.M. Naón, Phys. Rev. D 31 (1985) 2035. [4] A. Dobado, A. Gómez Nicola, A. López-Maroto and J.R. Peláez, Effective Lagrangians for the Standard Model (Springer, Berlin, 1997). [5] S. Coleman, Aspects of Symmetry (Selected Erice Lectures) (Cambridge Univ. Press, Cambridge, 1988). [6] R. Rajaraman, Solitons and lnstantons. An Introduction to Solitons and lnstantons in Quantum Field Theory (North-Holland, Amsterdam, 1982). [7] T.H.R. Skyrme, Proc. R. Soc. London A 260 (1961) 127. [8] E. Witten, Nucl. Phys. B 223 (1983) 422; B 223 (1983) 433. [9] J. Schwinger, Phys. Rev. 128 (1962) 2425; J. Lowenstein, A. Swieca, Ann. Phys. (N.Y.) 68 (1971) 172. [10] A. Barone and G. Paternb, Physics and Applications of the Josephson Effect (Wiley, New York, 1982). [11] R. Monaco, Int. J. Infrared and Millimeter Waves 11 (1990) 533. [12] N. Marlucciello and R. Monaco, Phys. Rev. B 53 (1996) 3471; Phys. Rev. B 55 (1997) 15 157. [13] T.W.B. Kibble, J. Phys. A: Math. Gen. 9 (1976) 1387. [14] A. Vilenkin and P. Shellard, Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, Cambridge, 1994). [15] V.M.H. Ruutu et al., Nature 382 (1996) 334. [16] A. Gómez Nicola, R.J. Rivers and D.A. Steer, in progress, 1998. [17] A.N. Redlich and L.C.R. Wijewardhana, Phys. Rev. Lett. 54 (1985) 970. [18] R.F. Álvarez-Estrada and A. Gómez Nicola, Phys. Lett. B 355 (1995) 288; B 380 (1996) 491 (E). [19] R.E Álvarez-Estrada and A. Gómez Nicola, Phys. Rev. D 57 (1998) 3618. [20] S. Coleman, Comm. Math. Phys. 31 (1973) 259 [21] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, 1993). [22] J. Goldstone and R. Jackiw, Phys. Rev. D 11 (1975) 1486. [23] C.W. Bernard, Phys. Rev. D 9 (1974) 3312. [24] D. Delépine, R. González Felipe and J. Weyers, Phys. Lett. B 419 (1998) 296. [25] E Ruiz Ruiz and R.E Álvarez-Estrada, Phys. Rev. D 35 (1987) 3161. [26] A. Gómez Nicola, R.J. Rivers and D.A. Steer, Kinks versus fermions, or the 2D sine-Gordon versus massive Thirring Models, at T > 0 and μ ≠ 0, (Proc. of the 5th Int. Workshop on Thermal Field Theory, Regensburg, Germany, 10-14 August, 1998), hep-th/9809080. [27] T.S. Evans and D.A. Steer, Nucl. Phys. B 474 (1996) 481. [28] T.S. Evans, T.W.B. Kibble and D.A. Steer, J. Math. Phys. 39 (1998) 5726. [29] M. Le Bellac, Thermal Field Theory (Cambridge Univ. Press, Cambridge, 1996). [30] L.H. Ryder, Quantum Field Theory, (Cambridge Univ. Press, Cambridge, 1985). [31] D.J. Amit, Y.Y. Goldschmidt and G. Grinstein, J. Phys. A 13 (1980) 585. 1321 B. Klaiber, in Lectures in Theoretical Physics, Lectures given at the Summer Institute in Theoretical Physics, University of Colorado, Boulder, CO, 1967, ed. A. Barut and W. Brittin (Gordon and Breach, New York, 1968) Vol. X, Part A. [33] K. Fujikawa, Phys. Rev. D 29 (1984) 285. [34] H.M. Fried, Functional Methods and Models in Quantum Field Theory (MIT Press, 1972).
dspace.entity.typePublication
relation.isAuthorOfPublication574aa06c-6665-4e9a-b925-fa7675e8c592
relation.isAuthorOfPublication.latestForDiscovery574aa06c-6665-4e9a-b925-fa7675e8c592

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gnicola40libre.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format

Collections