Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Unbounded violation of tripartite Bell inequalities

dc.contributor.authorPérez García, David
dc.contributor.authorWolf, Michael
dc.contributor.authorPalazuelos Cabezón, Carlos
dc.contributor.authorVillanueva Díez, Ignacio
dc.contributor.authorJunge, Marius
dc.date.accessioned2023-06-20T09:24:44Z
dc.date.available2023-06-20T09:24:44Z
dc.date.issued2008
dc.description.abstractWe prove that there are tripartite quantum states (constructed from random unitaries) that can lead to arbitrarily large violations of Bell inequalities for dichotomic observables. As a consequence these states can withstand an arbitrary amount of white noise before they admit a description within a local hidden variable model. This is in sharp contrast with the bipartite case, where all violations are bounded by Grothendieck's constant. We will discuss the possibility of determining the Hilbert space dimension from the obtained violation and comment on implications for communication complexity theory. Moreover, we show that the violation obtained from generalized GHZ states is always bounded so that, in contrast to many other contexts, GHZ states do in this case not lead to extremal quantum correlations. In order to derive all these physical consequences, we wil have to obtain new mathematical results in the theories of operator spaces and tensor norms. In particular, we will prove the existence of bounded but not completely bounded trilinear forms from commutative C*-algebras.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/10913
dc.identifier.citationPérez García, D., Wolf, M., Palazuelos Cabezón, C., Villanueva Díez, I. et al. «Unbounded Violation of Tripartite Bell Inequalities». Communications in Mathematical Physics, vol. 279, n.o 2, abril de 2008, pp. 455-86. DOI.org (Crossref), https://doi.org/10.1007/s00220-008-0418-4.
dc.identifier.doi10.1007/s00220-008-0418-4
dc.identifier.issn0010-3616
dc.identifier.officialurlhttps//doi.org/10.1007/s00220-008-0418-4
dc.identifier.relatedurlhttp://www.springerlink.com/content/728263187124v762/
dc.identifier.relatedurlhttp://www.springer.com/physics/journal/220
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49393
dc.issue.number2
dc.journal.titleCommunications in Mathematical Physics
dc.language.isoeng
dc.page.final486
dc.page.initial455
dc.publisherSpringer
dc.relation.projectID(MTM2005-00082)
dc.relation.projectIDRamón y Cajal
dc.rights.accessRightsopen access
dc.subject.keywordBanach-spaces
dc.subject.keywordQuantum entanglement
dc.subject.keywordSumming operators
dc.subject.keywordTensor-products
dc.subject.keywordQ-algebra
dc.subject.keywordTheorem
dc.subject.keywordPolynomials
dc.subject.keywordStates
dc.subject.keywordExtensions
dc.subject.keywordForms
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleUnbounded violation of tripartite Bell inequalitiesen
dc.typejournal article
dc.volume.number279
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication09970d9e-6722-4f02-aac0-023cf9867638
relation.isAuthorOfPublication45785a65-66ff-415c-a422-bfdc6e3ff149
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2008unbo.pdf
Size:
335.92 KB
Format:
Adobe Portable Document Format

Collections