Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Classical and quantum models in non-equilibrium statistical mechanics: moment methods and long-time approximations

dc.contributor.authorFernández Álvarez-Estrada, Ramón
dc.date.accessioned2023-06-20T04:01:27Z
dc.date.available2023-06-20T04:01:27Z
dc.date.issued2012-02
dc.description© 2012 by the author; licensee MDPI, Basel, Switzerland. The author is grateful to Craig Callender for inviting him to contribute to the Special Issue Arrow of Time of Entropy. The author acknowledges the financial support of Project FIS2008-01323, Ministerio de Ciencia e Innovacion, Spain. He is an associate member of BIFI (Instituto de Biocomputacion y Fisica de los Sistemas Complejos), Universidad de Zaragoza, Zaragoza, Spain. He thanks A. Rivas for discussions and facilities.
dc.description.abstractWe consider non-equilibrium open statistical systems, subject to potentials and to external "heat baths" (hb) at thermal equilibrium at temperature T (either with ab initio dissipation or without it). Boltzmann's classical equilibrium distributions generate, as Gaussian weight functions in momenta, orthogonal polynomials in momenta (the position-independent Hermite polynomials H_n's). The moments of non-equilibrium classical distributions, implied by the H_n's, fulfill a hierarchy: for long times, the lowest moment dominates the evolution towards thermal equilibrium, either with dissipation or without it (but under certain approximation). We revisit that hierarchy, whose solution depends on operator continued fractions. We review our generalization of that moment method to classical closed many-particle interacting systems with neither a hb nor ab initio dissipation: with initial states describing thermal equilibrium at T at large distances but non-equilibrium at finite distances, the moment method yields, approximately, irreversible thermalization of the whole system at T, for long times. Generalizations to non-equilibrium quantum interacting systems meet additional difficulties. Three of them are: (i) equilibrium distributions (represented through Wigner functions) are neither Gaussian in momenta nor known in closed form; (ii) they may depend on dissipation; and (iii) the orthogonal polynomials in momenta generated by them depend also on positions. We generalize the moment method, dealing with (i), (ii) and (iii), to some non-equilibrium one-particle quantum interacting systems. Open problems are discussed briefly.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34817
dc.identifier.doi10.3390/e14020291
dc.identifier.issn1099-4300
dc.identifier.officialurlhttp://dx.doi.org/10.3390/e14020291
dc.identifier.relatedurlhttp://www.mdpi.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44817
dc.issue.number2
dc.journal.titleEntropy
dc.language.isoeng
dc.page.final322
dc.page.initial291
dc.publisherMultidisciplinary Digital Publishing Institute
dc.relation.projectIDFIS2008-01323
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordBrownian-motion
dc.subject.keywordDynamical semigroups
dc.subject.keywordIrreversibility
dc.subject.keywordLionville
dc.subject.keywordParticle
dc.subject.keywordEquation
dc.subject.keywordSystems
dc.subject.keywordField
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleClassical and quantum models in non-equilibrium statistical mechanics: moment methods and long-time approximations
dc.typejournal article
dc.volume.number14
dcterms.references1. Wallace, D. Reading list for the philosophy of statistical mechanics. Available online: http://users.ox.ac.uk/ mert0130/papers/smreading.doc (accessed on 13 February 2012). 2. Kreuzer, H.J. Nonequilibrium Thermodynamics and Its Statistical Foundations; Clarendon Press:Oxford, UK, 1981. 3. Balescu, R. Equilibrium and Nonequilibrium Statistical Mechanics; John Wiley and Sons: New York, NY, USA, 1975. 4. Liboff, R.L. Kinetic Theory, 2nd ed.; John Wiley (Interscience): New York, NY, USA, 1998. 5. Zubarev, D.; Morozov, V.G.; R¨opke, G. Statistical Mechanics of Nonequilibrium Processes; Akademie Verlag: Berlin, Germany, 1996; Volume I. 6. Wigner, E.P. On the quantum correction for thermodynamic equilibvrium. Phys. Rev. 1932, 40, 749–759. 7. Hillery, M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. 8. Penrose, O. Foundations of statistical mechanics. Rep. Prog. Phys. 1979, 42, 1937–2006. 9. Brinkman, H.C. Brownian motion in a field of force and the diffusion theory of chemical reactions. Physica 1956, 22, 29–34. 10. Risken, H. The Fokker-Planck Equation, 2nd ed.; Springer: Berlin, Heidelberg, Germany, 1989. 11. Coffey, W.T.; Kalmykov, Yu. P. ; Waldron, J.T. The Langevin Equation, 2nd ed.; World Scientific: Singapore, 2004. 12. Coffey, W.T.; Kalmykov, Yu. P.; Titov, S.V.; Mulligan, B.P. Wigner function approach to the quantum Bronian motion of a particle in a potential. Phys. Chem. Chem. Phys. 2007, 9, 3361–3382. 13. Hochstrasser, U.W. Orthogonal polynomials. In Handbook of Mathematical Functions; Abramowitz, M., Stegun, I.A., Eds.; Dover: New York, NY, USA, 1965. 14. Álvarez-Estrada, R.F. New hierarchy for the Liouville equation, irreversibility and Fokker-Planck-like structures. Ann. Phys. (Leipzig) 2002, 11, 357–385. 15. Álvarez-Estrada, R.F. Liouville and Fokker-Planck dynamics for classical plasmas and radiation. Ann. Phys. (Leipzig) 2006, 15, 379–415. 16. Álvarez-Estrada, R.F. Nonequilibrium quasi-classical effective meson gas: Thermalization. Eur. Phys. J. A 2007, 31, 761–765. 17. Álvarez-Estrada, R.F. Nonequilibrium quantum anharmonic oscillator and scalar field: High temperature approximations. Ann. Phys. (Berlin) 2009, 18, 391–409. 18. Álvarez-Estrada, R.F. Brownian motion, quantum corrections and a generalization of the Hermite polynomials. J. Comput. Appl. Math. 2010, 233, 1453–1461. 19. Álvarez-Estrada, R.F. Classical systems: Moments, continued fractions, long-time approximations and irreversibility. AIP Conf. Proc. 2011, 1332, 261–262. 20. Álvarez-Estrada, R.F. Quantum Brownian motion and generalizations of the Hermite polynomials. J. Comput. Appl. Math. 2011, 236, 7–18. 21. Gautschi, W. Error functions and Fresnel integrals. In Handbook of Mathematical Functions; Abramowitz, M., Stegun, I.A., Eds.; Dover, New York, NY, USA, 1965. 22. Penrose, O.; Coveney, P.V. Is there a “canonical” non-equilibrium ensemble? Proc. R. Soc. Lond. 1994, A447, 631–646. 23. Louisell, W.H. Quantum Statistical Properties of Radiation; John Wiley and Sons: New York, NY, USA, 1973. 24. Haken, H. Laser Theory; Encyclopedia of Physics, Volume XXV/2c, Light and Matter Ic; Springer: Berlin, Heidelberg, Germany, 1970. 25. Gardiner, C.W.; Zoller, P. Quantum Noise, 3rd ed.; Springer: Berlin, Heidelberg, Germany, 2004. 26. Weiss, U. Quantum Dissipative Systems, 3rd ed.; World Scientific: Singapore, 2008. 27. Joos, E.; Zeh, H.D.; Kiefer, C.; Giulini, D.; Kupsch, J.; Stamatescu, I.-O. Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd ed.; Springer: Berlin, Heidelberg, Germany, 2003. 28. van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 2001. 29. Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2006. 30. Haroche, S.; Raimond, J.-M. Exploring the Quantum; Oxford University Press: Oxford, UK, 2008. 31. Rivas, A.; Huelga, S.F. Open Quantum Systems. An Introduction; Springer: Berlin, Heidelberg, Germany, 2011. 32. Coffey, W.T.; Kalmykov, Yu.P.; Titov, S.V.; Mulligan, B.P. Semiclassical Klein-Kramers and Smoluchowski equations for the Brownian motion of a particle in an external potential. J. Phys. A Math. Theor. 2007, 40, F91–F98. 33. Lindblad, G. On the generators of quantum dynamical semigroups Commun. Math. Phys. 1976, 48, 119–130. 34. Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely positive semigroups of N-level systems. J. Math. Phys. 1976, 17, 821–825. 35. García-Palacios, J.L.; Zueco, D. The Caldeira-Leggett quantum master equation in Wigner phase space: Continued-fraction solutions and applications to Brownian motion in periodic potentials. J. Phys. A Math. Gen. 2004, 37, 10735–10770.
dspace.entity.typePublication
relation.isAuthorOfPublication1d9ad3e6-2e32-4c9b-b666-73b1e18d1c0e
relation.isAuthorOfPublication.latestForDiscovery1d9ad3e6-2e32-4c9b-b666-73b1e18d1c0e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FernándezÁlvarezEstradaRamón03LIBRE.pdf
Size:
496.83 KB
Format:
Adobe Portable Document Format

Collections