Supremum Norms for 2-Homogeneous Polynomials on Circle Sectors
dc.contributor.author | Muñoz-Fernández, Gustavo A. | |
dc.contributor.author | Pellegrino, D. | |
dc.contributor.author | Seoane Sepúlveda, Juan Benigno | |
dc.contributor.author | Weber, A. | |
dc.date.accessioned | 2023-06-19T13:27:32Z | |
dc.date.available | 2023-06-19T13:27:32Z | |
dc.date.issued | 2014 | |
dc.description.abstract | We consider the Banach space of two homogeneous polynomials endowed with the supremum norm parallel to . parallel to(D(beta)) over circle sectors D(beta) of angle beta for several values of beta is an element of [0, 2 pi]. We provide an explicit formula for parallel to . parallel to(D(beta)), a full description of the extreme points of the corresponding unit balls, and a parametrization and a plot of their unit spheres. This work is an extension of a series of papers on the same topic published in the last decade and it has a number of applications to obtain polynomial-type inequalities | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CNPq | |
dc.description.sponsorship | INCT-Matematica | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/28163 | |
dc.identifier.issn | 0944-6532 | |
dc.identifier.officialurl | http://www.heldermann-verlag.de/jca/jca21/jca1310_b.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33759 | |
dc.issue.number | 3 | |
dc.journal.title | Journal of Convex Analysis | |
dc.language.iso | eng | |
dc.page.final | 764 | |
dc.page.initial | 743 | |
dc.publisher | Heldermann Verlag | |
dc.relation.projectID | 477124/2012-7 | |
dc.relation.projectID | MTM2009-07848 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Bernstein and Markov inequalities | |
dc.subject.keyword | Unconditional constants | |
dc.subject.keyword | Polarizations constants | |
dc.subject.keyword | Polynomial inequalities | |
dc.subject.keyword | Homogeneous polynomials | |
dc.subject.keyword | Extreme points | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Supremum Norms for 2-Homogeneous Polynomials on Circle Sectors | |
dc.type | journal article | |
dc.volume.number | 21 | |
dcterms.references | [1] R. M. Aron, M. Klimek: Supremum norms for quadratic polynomials, Arch. Math.76 (2001) 73–80. [2] L. Białas-Cie˙z, P. Goetgheluck: Constants in Markov’s inequality on convex sets,East J. Approx. 1(3) (1995) 379–389. [3] Y. S. Choi, S. G. Kim: The unit ball of P(2l2 2), Arch. Math. 71(6) (1998) 472–480. [4] Y. S. Choi, S. G. Kim: Smooth points of the unit ball of the space P(2l1), Results Math. 36 (1999) 26–33. [5] Y. S. Choi, S. G. Kim: Exposed points of the unit balls of the spaces P(2l2 p) (p = 1, 2,∞), Indian J. Pure Appl. Math. 35 (2004) 37–41. [6] J. L. G´amez-Merino, G. A. Muñoz-Fernandez, V. M. Sanchez, J. B. Seoane-Sepulveda: Inequalities for polynomials on the unit square via the Krein-Milman Theorem, J. Convex Analysis 20(1) (2013) 125–142. [7] B. C. Grecu: Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces, J. Math. Anal. Appl. 293(1) (2004) 578–588. [8] B. C. Grecu: Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math. 25(4)(2002) 421–435. [9] B. C. Grecu: Geometry of 2-homogeneous polynomials on lp spaces, 1 < p < ∞, J. Math. Anal. Appl. 273(1) (2002)262–282. [10] B. C. Grecu: Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math. 76(6) (2001) 445–454. [11] B. C. Grecu: Geometry of three-homogeneous polynomials on real Hilbert spaces,J. Math. Anal. Appl. 246(1) (2000) 217–229. [12] B. C. Grecu, G. A. Muñoz-Fernandez, J. B. Seoane-Sepulveda: The unit ball of the complex P(3H), Math. Z. 263 (2009) 775–785. [13] B. C. Grecu, G. A. Muñoz-Fern´andez, J. B. Seoane-Sepulveda: Unconditional constants and polynomial inequalities, J. Approx. Theory 161(2) (2009) 706–722. [14] A. G. Konheim, T. J. Rivlin: Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly 73 (1966) 505–507. [15] L. Milev, S. G. Revesz: Bernstein’s inequality for multivariate polynomials on the standard simplex,J.Inequal. Appl. 2005(2) (2005) 145–163. [16] L. Milev, N. Naidenov: Strictly definite extreme points of the unit ball in a polynomial space, C. R. Acad. Bulg. Sci. 61 (2008) 1393–1400. [17] L. Milev, N. Naidenov: Indefinite extreme points of the unit ball in a polynomial space, Acta Sci. Math. 77 (2011) 409–424. [18] G. A. Muñoz-Fernandez, D. Pellegrino, J. Ramos Campos, J. B. Seoane-Sep´ulveda: On the optimality of the hypercontractivity of the complex Bohnenblust-Hille inequality,arXiv:1301.1539 (2013). [19] G. A. Muñoz-Fernandez, S. G. Revesz, J. B. Seoane-Sepulveda: Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (2009)147–160. [20] G. A. Muñoz-Fernandez, V. M. S´anchez, J. B. Seoane-Sep´ulveda: Estimates on the derivative of a polynomial with a curved majorant using convex techniques, J.Convex Analysis 17(1) (2010) 241–252. [21] G. A. Muñoz-Fern´andez, V. M. Sanchez, J. B. Seoane-Sepulveda: Lp-analogues of Bernstein and Markov inequalities, Math. Inequal. Appl. 14(1) (2011) 135–145. [22] G. A. Muñoz-Fernandez, Y. Sarantopoulos: Bernstein and Markov-type inequalities for polynomials in real Banach spaces, Math. Proc. Camb. Philos. Soc. 133 (2002) 515–530. [23] G. A. Muñoz-Fernandez, Y. Sarantopoulos, J. B. Seoane-Sepulveda: An application of the Krein-Milman theorem to Bernstein and Markov inequalities, J. Convex Analysis 15 (2008) 299–312. [24] G. A. Muñoz-Fernandez, J. B. Seoane-Sepulveda:Geometry of Banach spaces of Trinomials, J. Math. Anal. Appl. 340 (2008) 1069–1087. [25] D. Nadzhmiddinov, Yu. N. Subbotin: Markov inequalities for polynomials on triangles,Mat. Zametki 46(2) (1989) 76–82, 159 (in Russian); Math. Notes 46(2)(1989) 627–631 (in English). [26] S. Neuwirth: The maximum modulus of a trigonometric trinomial, J. Anal. Math.104 (2008) 371–396. [27] D. R. Wilhelmsen: A Markov inequality in several dimensions, J. Approx. Theory 11 (1974) 216–220. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e85d6b14-0191-4b04-b29b-9589f34ba898 | |
relation.isAuthorOfPublication.latestForDiscovery | e85d6b14-0191-4b04-b29b-9589f34ba898 |
Download
Original bundle
1 - 1 of 1