HEVC optimization based on human perception for real-time environments
dc.contributor.author | Fernández, D. G. | |
dc.contributor.author | García, Carlos | |
dc.contributor.author | Grecos, Christos | |
dc.contributor.author | Botella Juan, Guillermo | |
dc.contributor.author | Del Barrio García, Alberto Antonio | |
dc.contributor.author | Prieto Matías, Manuel | |
dc.date.accessioned | 2025-01-29T14:09:39Z | |
dc.date.available | 2025-01-29T14:09:39Z | |
dc.date.issued | 2020-06 | |
dc.description.abstract | High-Efficiency Video Coding (HEVC) is the new emerging video coding standard of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). The HEVC standard provides a significant improvement in compression efficiency in comparison with existing standards such as H264/AVC by means of greater complexity. In this paper we will examine several HEVC optimizations based on image analysis to reduce its huge CPU, resource and memory expensive encoding process. The proposed algorithms optimize the HEVC quadtree partitioning procedure, intra/inter prediction and mode decision by means of H264-based methods and spatial and temporal homogeneity analysis which is directly applied to the original video. The validation process of these approaches was conducted by taking into account the human visual system (HVS). The adopted solution makes it possible to perform HEVC real time encoding for HD sequences on a low cost processor with negligible quality loss. Moreover, the frames pre-processing leverages the logic units and embedded hardware available on an Intel GPU, so the execution time of these stages are negligible for the encoding processor. | |
dc.description.department | Depto. de Arquitectura de Computadores y Automática | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.doi | 10.1007/s11042-018-7033-y | |
dc.identifier.officialurl | https://doi.org/10.1007/s11042-018-7033-y | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/116927 | |
dc.journal.title | Multimedia Tools and Applications | |
dc.language.iso | eng | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.keyword | HEVC | |
dc.subject.keyword | CU size decision | |
dc.subject.keyword | Spatial homogeneity | |
dc.subject.keyword | Temporal homogeneity | |
dc.subject.keyword | HVS metrics | |
dc.subject.keyword | GPU | |
dc.subject.keyword | Mode decision | |
dc.subject.keyword | Intra prediction | |
dc.subject.keyword | Inter prediction | |
dc.subject.keyword | Texture analysis | |
dc.subject.ucm | Hardware | |
dc.subject.unesco | 3304 Tecnología de Los Ordenadores | |
dc.title | HEVC optimization based on human perception for real-time environments | |
dc.type | journal article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f94b32c6-dff7-4d98-9c7a-00aad48c2b6a | |
relation.isAuthorOfPublication | 53f86d34-b560-4105-a0bc-a8d1994153ab | |
relation.isAuthorOfPublication | 5d3f6717-1495-4217-853c-8c9c75d56620 | |
relation.isAuthorOfPublication.latestForDiscovery | f94b32c6-dff7-4d98-9c7a-00aad48c2b6a |
Download
Original bundle
1 - 1 of 1